Muutke küpsiste eelistusi

E-raamat: Applied Machine Learning for Smart Data Analysis

Edited by (VIIT, Pune), Edited by (Department of Information Technology, Government College of Engineering, Karad, India), Edited by (JIS University, Kolkata), Edited by (Department of Computer Engineering, Smt Kashibai Navale College of Engineering, Vadgaon(Bk), Pune, INDI)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 64,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"The book focuses on how machine learning and Internet of Things (IoT) has empowered the advancement of information driven arrangements including key concepts and advancements. Divided into sections such as machine learning, security, IoT and data mining, the concepts are explained with practical implementation including results"--

The book focusses on how machine learning and Internet of Things (IoT) has empowered the advancement of information driven arrangements including key concepts and advancements. Ontologies that are used in heterogeneous IoT environment have been discussed including interpretation, context awareness, analyzing various data sources, machine learning algorithms and intelligent services and applications. Further, it includes unsupervised and semi-supervised machine learning techniques with study of semantic analysis and sentimental analysis of reviews. Divided into sections as machine learning, security, IoT and data mining, the concepts are explained with practical implementation including results.

Key Features

Follows an algorithmic approach for data analysis in machine learning

Introduces machine learning methods in applications

Address the emerging issues in computing like deep learning, machine learning, internet of things and data analytics

Focuses on machine learning techniques namely unsupervised and semi-supervised for unseen and seen data sets

Case studies are covered relating to the human health, transportation and internet applications

Preface vii
Editors xi
List of Contributors xv
Section I Machine Learning 1(68)
1 Hindi and Urdu to English Named Entity Statistical Machine Transliteration Using Source Language Word Origin Context
3(18)
M.L. Dhore
P.H. Rathod
2 Anti-Depression Psychotherapist Chatbot for Exam and Study-Related Stress
21(20)
Mohd. Shafi Pathan
Rushikesh Jain
Rohan Aswani
Kshitij Kulkarni
Sanchit Gupta
3 Plagiasil: A Plagiarism Detector Based on MAS Scalable Framework for Research Effort Evaluation by Unsupervised Machine Learning - Hybrid Plagiarism Model
41(28)
Sangram Gawali
Devendra Singh Thakore
Shashank D. Joshi
Vidyasagar Sachin Shinde
Section II Machine Learning in Data Mining 69(84)
4 Digital Image Processing Using Wavelets: Basic Principles and Application
71(26)
Luminita Moraru
Simona Moldovanu
Salam Khan
Anjan Biswas
5 Probability Predictor Using Data-Mining Techniques
97(20)
P.N. Railkar
Pinakin Parkhe
Naman Verma
Sameer Joshi
Ketaki Pathak
Shaikh Naser Hussain
6 Big Data Summarization Using Modified Fuzzy Clustering Algorithm, Semantic Feature, and Data Compression Approach
117(18)
Shilpa G. Kolte
Jagdish W. Bakal
7 Topic-Specific Natural Language Chatbot as General Advisor for College
135(18)
Varun Patil
Yogeshwar Chaudhari
Harsh Rohila
Pranav Bhosale
P.S. Desai
Section III Machine Learning in IoT 153(30)
8 Implementation of Machine Learning in the Education Sector: Analyzing the Causes behind Average Student Grades
155(14)
Prayag Tiwari
Jia Qian
Qiuchi Li
9 Priority-Based Message-Forwarding Scheme in VANET with Intelligent Navigation
169(14)
Sachin P. Godse
Parikshit N. Mahalle
Mohd. Shafi Pathan
Section IV Machine Learning in Security 183(40)
10 A Comparative Analysis and Discussion of Email Spam Classification Methods Using Machine Learning Techniques
185(22)
Aakash Atul Alurkar
Sourabh Bharat Ranade
Shreeya Vijay Joshi
Siddhesh Sanjay Ranade
Gitanjali R. Shinde
Piyush A. Sonewar
Parikshit N. Mahalle
11 Malware Prevention and Detection System for Smartphone: A Machine Learning Approach
207(16)
Sachin M. Kolekar
Index 223
Nilanjan Dey, Sanjeev Wagh, Parikshit N. Mahalle, Mohd. Shafi Pathan