Muutke küpsiste eelistusi

E-raamat: Applied Mathematics: An Intellectual Orientation

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The primary objective of the course presented here is orientation for those interested in applying mathematics, but the course should also be of value or in using math­ to those interested in mathematical research and teaching ematics in some other professional context. The course should be suitable for college seniors and graduate students, as well as for college juniors who have had mathematics beyond the basic calculus sequence. Maturity is more significant than any formal prerequisite. The presentation involves a number of topics that are significant for applied mathematics but that normally do not appear in the curriculum or are depicted from an entirely different point of view. These topics include engineering simulations, the experience patterns of the exact sciences, the conceptual nature of pure mathematics and its relation to applied mathe­ matics, the historical development of mathematics, the associated conceptual aspects of the exact sciences, and the metaphysical implications of mathe­ matical scientific theories. We will associate topics in mathematics with areas of application. This presentation corresponds to a certain logical structure. But there is an enormous wealth of intellectual development available, and this permits considerable flexibility for the instructor in curricula and emphasis. The prime objective is to encourage the student to contact and utilize this rich heritage. Thus, the student's activity is critical, and it is also critical that this activity be precisely formulated and communicated.

Muu info

Springer Book Archives
1. Introduction.- 1.1. Vocational Aspects.- 1.2. Intellectual
Attitudes.- 1.3. Opportunities in Applied Mathematics.- 1.4. Course
Objectives.- Exercises.-
2. Simulations.- 2.1. Organized Efforts.- 2.2.
Staging.- 2.3. Simulations.- 2.4. Influence Block Diagram and Math Model.-
2.5. Temporal Patterns.- 2.6. Operational Flight Trainer.- 2.7. Block
Diagrams.- 2.8. Equipment.- 2.9. The Time Pattern of the Simulation.- 2.10.
Programming.- 2.11. Management Considerations.- 2.12. Validity.- Exercises.-
References.-
3. Understanding and Mathematics.- 3.1. Experience and
Understanding.- 3.2. Unit Experience.- 3.3. The Exact Sciences.- 3.4.
Scientific Understanding.- 3.5. Logic and Arithmetic.- 3.6. Algebra.- 3.7.
Axiomatic Developments.- 3.8. Analysis.- 3.9. Modern Formal Logic.- 3.10.
Pure and Applied Mathematics.- 3.11. Vocational Aspects.- Exercises.-
References.-
4. Ancient Mathematics.- 4.1. Ancient Arithmetic.- 4.2. Egyptian
Mathematics.- 4.3. Babylonian Mathematics.- 4.4. Greece.- 4.5. Euclids
Elements.- 4.6. Magnitudes.- 4.7. Geometry and Philosophy.- 4.8. The Conic
Sections.- 4.9. Parabolic Areas.- Exercises.- References.-
5. Transition and
Developments.- 5.1. Algebra.- 5.2. Non-Euclidean Geometry.- 5.3. Geometric
Developments.- 5.4. Geometry and Group Theory.- 5.5. Arithmetic.- 5.6. The
Celestial Sphere.- 5.7. The Motion of the Sun.- 5.8. Synodic Periods.- 5.9.
Babylonian Tables.- 5.10. Geometric Formulations.- 5.11. Astronomical
Experience in Terms of Accuracy.- 5.12. Optical Instruments and
Developments.- Exercises.- References.-
6. Natural Philosophy.- 6.1.
Analysis.- 6.2. The Calculus.- 6.3. The Transformation of Mathematics.- 6.4.
The Method of Fluxions.- 6.5. The Behavior of Substance in the Eulerian
Formulation.- 6.6. The Generalized Stokes Theorem.- 6.7.The Calculus of
Variations.- 6.8. Dynamics.- 6.9. Manifolds.- 6.10. The Weyl Connection.-
6.11. The Riemannian Metric.- Exercises.- References.-
7. Energy.- 7.1. The
Motion of Bodies.- 7.2. The Stress Tensor.- 7.3. Deformation and Stress.-
7.4. An Elastic Collision.- 7.5. Thermodynamic States and Reversibility.-
7.6. Thermodynamic Functions.- 7.7. The Carnot Cycle and Entropy.- 7.8. The
Relation with Applied Mathematics.- Exercises.- References.-
8. Probability.-
8.1. The Development of Probability.- 8.2. Applications.- 8.3. Probability
and Mechanics.- 8.4. Relation to Thermodynamics.- 8.5. The Fine Structure of
Matter.- 8.6. Analysis.- Exercises.- References.-
9. The Parado.- 9.1.
Intellectual Ramifications.- 9.2. The Paradox.- 9.3. Final Comment.-
Exercises.- References.