Muutke küpsiste eelistusi

E-raamat: Applied Mechanics of Polymers: Properties, Processing, and Behavior

(Professor, San Diego State University, San Diego, CA, USA)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 02-Dec-2021
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780128210796
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 238,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 02-Dec-2021
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780128210796
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Applied Mechanics of Polymers: Properties, Processing, and Behavior provides readers with an overview of the properties, mechanical behaviors and modeling techniques for accurately predicting the behaviors of polymeric materials. The book starts with an introduction to polymers, covering their history, chemistry, physics, and various types and applications. In addition, it covers the general properties of polymers and the common processing and manufacturing processes involved with them. Subsequent chapters delve into specific mechanical behaviors of polymers such as linear elasticity, hyperelasticity, creep, viscoelasticity, failure, and fracture. The book concludes with chapters discussing electroactive polymers, hydrogels, and the mechanical characterization of polymers.

This is a useful reference text that will benefit graduate students, postdocs, researchers, and engineers in the mechanics of materials, polymer science, mechanical engineering and material science.

  • Provides examples of real-world applications that demonstrate the use of models in designing polymer-based components
  • Includes access to a companion site from where readers can download FEA and MATLAB code, FEA simulation files, videos and other supplemental material
  • Features end-of-chapter summaries with design and analysis guidelines, practice problem sets based on real-life situations, and both analytical and computational examples to bridge academic and industrial applications
1 Introduction and background
1(18)
1.1 Introduction
1(5)
1.2 Historical perspective
6(2)
1.3 Type of polymers
8(4)
1.4 Areas of study in polymer science
12(4)
1.4.1 Polymer chemistry
13(2)
1.4.2 Polymer physics
15(1)
1.4.3 Polymer mechanics
15(1)
1.5 Industrial applications of polymers
16(1)
1.6 Closing remarks
17(2)
Practice problems
17(1)
References
18(1)
2 General properties of polymers
19(30)
2.1 Introduction
19(5)
2.2 Quasi-static mechanical response
24(9)
2.3 Long-term properties
33(6)
2.3.1 Creep
33(5)
2.3.2 Relaxation
38(1)
2.4 Dynamic properties
39(6)
2.5 Other properties
45(4)
Practice problems
45(2)
References
47(2)
3 Processing and manufacturing of polymers
49(30)
3.1 Introduction
49(7)
3.2 Extrusion
56(4)
3.3 Sheets, films, and filaments
60(3)
3.4 Thermoforming
63(3)
3.5 Injection molding
66(3)
3.6 Additive manufacturing
69(10)
Practice problems
75(1)
References
76(3)
4 Linear elastic behavior of polymers
79(38)
4.1 Introduction
79(3)
4.2 Stress and equilibrium
82(10)
4.2.1 Plane stress
90(1)
4.2.2 Simple tension
91(1)
4.2.3 Simple shear
91(1)
4.2.4 Hydrostatic stress
91(1)
4.3 Strain and compatibility
92(2)
4.3.1 Plane strain
93(1)
4.4 Linear elastic material behavior
94(7)
4.4.1 Isotropic materials
94(5)
4.4.2 Orthotropic materials
99(1)
4.4.3 Transverse isotropic materials
100(1)
4.5 Structural component design
101(7)
4.6 Applied FEA simulation examples
108(9)
Practice problems
115(1)
References
116(1)
5 Hyperelastic behavior of polymers
117(28)
5.1 Introduction
117(1)
5.2 Theoretical preliminaries
118(10)
5.2.1 Displacement field
118(2)
5.2.2 Deformation gradient
120(3)
5.2.3 Polar decomposition
123(2)
5.2.4 Strain tensors
125(1)
5.2.5 Stress tensors
126(2)
5.3 Stress--strain relationships
128(4)
5.4 Hyperelastic models
132(6)
5.4.1 Neo-Hookean model
133(1)
5.4.2 Mooney-Rivlin model
134(1)
5.4.3 Yeoh model
135(1)
5.4.4 Gent model
136(1)
5.4.5 Ogden model
137(1)
5.4.6 Ogden Hyper-foam model
138(1)
5.5 Applications of hyperelastic models in component design
138(7)
Practice problems
143(1)
References
143(2)
6 Creep behavior of polymers
145(20)
6.1 Introduction
145(3)
6.2 Simple creep models
148(10)
6.2.1 Maxwell model
150(2)
6.2.2 Kelvin model
152(2)
6.2.3 Four-parameters model
154(2)
6.2.4 Zener model
156(2)
6.3 Additional creep models
158(2)
6.3.1 Findley power law
158(1)
6.3.2 Norton--bailey law
159(1)
6.3.3 Prandtl--Garofalo law
159(1)
6.4 Applications of creep in component design
160(1)
6.5 Applied FEA simulation example
160(5)
Practice problems
162(2)
References
164(1)
7 Viscoelastic behavior of polymers
165(28)
7.1 Introduction
165(2)
7.2 Theoretical preliminaries
167(4)
7.2.1 Boltzmann superposition principle
167(1)
7.2.2 Generalized Maxwell model
168(2)
7.2.3 Generalized Kelvin model
170(1)
7.3 Linear viscoelasticity
171(14)
7.3.1 Small-strain linear viscoelasticity
172(13)
7.3.2 Large-strain linear viscoelasticity
185(1)
7.4 Applications of linear viscoelasticity in component design
185(3)
7.5 Applied FEA simulation example
188(5)
Practice problems
191(1)
References
191(2)
8 Electroactive polymers
193(28)
8.1 Introduction
193(2)
8.2 Theoretical preliminaries
195(9)
8.3 Electrostrictive polymers
204(3)
8.4 Dielectric elastomers
207(7)
8.5 Applications of electroactive polymers
214(1)
8.6 Applied FEA simulation example
215(6)
Practice problems
217(1)
References
218(3)
9 Hydrogels
221(22)
9.1 Introduction
221(7)
9.2 Mechanics of hydrogels
228(8)
9.2.1 Hydrogel deformation theory
228(4)
9.2.2 Poroelasticity
232(4)
9.3 Applications of hydrogels
236(1)
9.4 Applied FEA simulation example
237(6)
Practice problems
239(1)
References
240(3)
10 Failure and fracture of polymers
243(30)
10.1 Introduction
243(7)
10.2 Shear yielding
250(4)
10.3 Crazing
254(4)
10.4 Fracture mechanics
258(4)
10.5 Fatigue
262(11)
Practice problems
269(1)
References
269(4)
11 Characterization of polymers
273(28)
11.1 Introduction
273(5)
11.2 Thermal characterizations
278(4)
11.2.1 Differential scanning calorimetry
278(3)
11.2.2 Thermogravimetric analyzer
281(1)
11.3 Microscopy characterizations
282(9)
11.3.1 Optical microscopy
284(1)
11.3.2 Scanning electron microscopy
285(2)
11.3.3 Transmission electron microscopy
287(1)
11.3.4 Atomic force microscopy
287(4)
11.4 Spectroscopy characterizations
291(10)
11.4.1 UV-visible spectroscopy
292(1)
11.4.2 Fourier transform infrared spectroscopy
293(1)
11.4.3 Raman spectroscopy
294(1)
11.4.4 Terahertz time-domain spectroscopy
295(1)
Practice problems
296(1)
References
297(4)
Index 301
George Youssef is a professor of mechanical engineering at San Diego State University, San Diego, CA, United States. He received his PhD in experimental solid mechanics from University of California, Los Angeles (UCLA). He also has masters degrees from UCLA in solid and structural mechanics and from California State University, Northridge in systems controls. He is a registered professional engineer in the state of California, has received multiple educational and research awards, and has published dozens of peer-reviewed articles in well-known journals. His research interest is in mechanics of non-traditional materials, including polymers, fiber-reinforced polymer matrix composites, active polymers, and composites of smart materials.