|
1 Introduction and Basic Concepts |
|
|
1 | (22) |
|
|
1 | (1) |
|
|
1 | (1) |
|
1.3 Unit and Item Nonresponse |
|
|
2 | (1) |
|
1.4 Patterns of Observed and Missing Values |
|
|
3 | (1) |
|
1.5 Inferential Approaches and Concepts |
|
|
4 | (4) |
|
1.5.1 Design-Based Approach |
|
|
5 | (1) |
|
1.5.2 Model-Based Approaches |
|
|
6 | (2) |
|
1.6 Statistical Inference and Missing Data |
|
|
8 | (1) |
|
1.7 The Method of Multiple Imputation |
|
|
9 | (1) |
|
1.8 Illustration of Concepts and Techniques |
|
|
10 | (10) |
|
1.8.1 Unit and Item Nonresponse, (Non)response Pattern |
|
|
10 | (1) |
|
1.8.2 Design-Based Approach |
|
|
10 | (4) |
|
1.8.3 Model-Based Approaches |
|
|
14 | (6) |
|
|
20 | (3) |
|
|
21 | (2) |
|
2 Missing Data Mechanism and Ignorability |
|
|
23 | (30) |
|
|
23 | (1) |
|
|
23 | (2) |
|
|
24 | (1) |
|
2.3 The Missing Data Mechanism |
|
|
25 | (6) |
|
2.3.1 Missing Completely at Random (MCAR) |
|
|
26 | (2) |
|
2.3.2 Missing at Random (MAR) |
|
|
28 | (2) |
|
2.3.3 Missing Not at Random (MNAR) |
|
|
30 | (1) |
|
2.4 Ignorability of the Missing Data Mechanism |
|
|
31 | (10) |
|
2.4.1 Frequentist Approach |
|
|
33 | (2) |
|
2.4.2 Likelihood Approach |
|
|
35 | (5) |
|
|
40 | (1) |
|
|
41 | (4) |
|
|
45 | (5) |
|
|
50 | (3) |
|
|
51 | (2) |
|
|
53 | (32) |
|
|
53 | (1) |
|
|
53 | (9) |
|
3.2.1 Complete Case and Available Case Analysis |
|
|
54 | (1) |
|
3.2.2 Completing Data Sets |
|
|
55 | (7) |
|
3.3 Maximum Likelihood Estimation |
|
|
62 | (13) |
|
|
62 | (3) |
|
|
65 | (5) |
|
3.3.3 The Nonignorable Case |
|
|
70 | (5) |
|
|
75 | (3) |
|
|
78 | (3) |
|
|
79 | (1) |
|
3.5.2 Multiple Imputation |
|
|
80 | (1) |
|
|
81 | (4) |
|
|
82 | (3) |
|
4 Multiple Imputation: Theory |
|
|
85 | (48) |
|
|
85 | (1) |
|
4.2 Multiple Imputation: Introduction |
|
|
85 | (1) |
|
4.3 Theoretical Background |
|
|
86 | (14) |
|
|
86 | (2) |
|
4.3.2 Bayesian Motivation |
|
|
88 | (1) |
|
4.3.3 The Combining Rules |
|
|
89 | (1) |
|
4.3.4 Frequentist Evaluation |
|
|
90 | (8) |
|
4.3.5 Inferences Based on Finite M |
|
|
98 | (2) |
|
4.4 How to Generate Multiple Imputations |
|
|
100 | (11) |
|
|
100 | (2) |
|
4.4.2 Monotone-Distinct Structure |
|
|
102 | (4) |
|
4.4.3 Beyond Monotone-Distinct Structures |
|
|
106 | (1) |
|
4.4.4 Arbitrary Missing Data Patterns: A General Procedure |
|
|
107 | (2) |
|
4.4.5 Generating Imputations by Joint Modeling |
|
|
109 | (1) |
|
4.4.6 Generating Imputations by Fully Conditional Specification |
|
|
110 | (1) |
|
4.5 Further Topics and Open Problems |
|
|
111 | (17) |
|
4.5.1 Transforming, Rounding and Trimming |
|
|
111 | (4) |
|
4.5.2 Imputation of Functions of Variables |
|
|
115 | (3) |
|
|
118 | (4) |
|
4.5.4 The Imputation Models: (Non-)ignorability |
|
|
122 | (1) |
|
4.5.5 Reproducible Results |
|
|
122 | (1) |
|
4.5.6 Some Additional Notes |
|
|
123 | (1) |
|
4.5.7 Choosing from a Large Number of Imputation Techniques |
|
|
124 | (4) |
|
|
128 | (5) |
|
|
129 | (4) |
|
5 Multiple Imputation: Application |
|
|
133 | (86) |
|
|
133 | (2) |
|
5.2 Data and Substantive Model |
|
|
135 | (7) |
|
|
135 | (2) |
|
5.2.2 Growth Curve Models |
|
|
137 | (5) |
|
5.3 Multiple Imputation of Missing Data |
|
|
142 | (8) |
|
5.3.1 Reading in the CrimoC data |
|
|
142 | (1) |
|
5.3.2 Missing Data Inspection |
|
|
143 | (6) |
|
5.3.3 Choosing the Multiple Imputation Framework |
|
|
149 | (1) |
|
5.3.4 Building the Imputation Model |
|
|
149 | (1) |
|
5.4 Multiple Imputation with mice |
|
|
150 | (8) |
|
|
151 | (1) |
|
5.4.2 Argument predictorMatrix |
|
|
151 | (1) |
|
5.4.3 Multiple Imputation by Predictive Mean Matching |
|
|
152 | (5) |
|
|
157 | (1) |
|
5.5 Other R Packages and Functions for Multivariate Data Imputation |
|
|
158 | (16) |
|
|
158 | (7) |
|
|
165 | (4) |
|
|
169 | (2) |
|
|
171 | (1) |
|
5.5.5 Comparison of Results |
|
|
172 | (2) |
|
5.6 Multiple Imputation of Clustered or Panel Data Using Multilevel Models |
|
|
174 | (9) |
|
5.6.1 A Brief Introduction to Multilevel Regression Models |
|
|
175 | (1) |
|
5.6.2 Strategies to Impute Clustered or Panel Data |
|
|
176 | (1) |
|
|
177 | (6) |
|
5.7 Repeated Data Analysis and Pooling of Results in R |
|
|
183 | (21) |
|
|
184 | (3) |
|
|
187 | (1) |
|
|
188 | (2) |
|
5.7.4 Generalized Linear Mixed-Effects Model |
|
|
190 | (3) |
|
5.7.5 Two-Level Negative Binomial Hurdle Model |
|
|
193 | (2) |
|
5.7.6 Correlation Coefficients |
|
|
195 | (1) |
|
5.7.7 Further Useful Tools for Multiple Imputation Inference |
|
|
196 | (8) |
|
|
204 | (15) |
|
5.8.1 Inspection of Imputed Values Using the boxplot() Function |
|
|
204 | (2) |
|
5.8.2 Comparison of the Distributions of Observed and Imputed Values Using the hist() Function |
|
|
206 | (2) |
|
5.8.3 Comparison of Observed and Imputed Values Using the stripplot() Function |
|
|
208 | (1) |
|
5.8.4 Comparison of Observed and Imputed Values Using compare.percent.count() |
|
|
209 | (1) |
|
5.8.5 Comparison of Observed and Imputed Values Using compare.obs.imp() |
|
|
210 | (1) |
|
5.8.6 Assessing the Suitability of the Imputation Method by Means of Monte Carlo Simulation |
|
|
211 | (3) |
|
|
214 | (5) |
|
6 Multiple Imputation: New Developments |
|
|
219 | (38) |
|
|
219 | (1) |
|
6.2 Parametric Multiple Imputation of Incomplete Count Data |
|
|
220 | (10) |
|
6.2.1 Count Data Modeling in a Nutshell |
|
|
221 | (1) |
|
6.2.2 The count imp Package |
|
|
222 | (8) |
|
|
230 | (1) |
|
6.3 ImputeRobust--Imputation Based on Generalized Additive Models for Location, Scale and Shape |
|
|
230 | (5) |
|
6.3.1 ImputeRobust in a Nutshell |
|
|
231 | (2) |
|
|
233 | (2) |
|
|
235 | (1) |
|
6.4 Quantile Regression Based Multiple Imputation |
|
|
235 | (4) |
|
|
237 | (1) |
|
|
238 | (1) |
|
6.5 Two-Level Predictive Mean Matching |
|
|
239 | (2) |
|
|
239 | (1) |
|
|
240 | (1) |
|
|
240 | (1) |
|
6.6 The Growth Curve ZIP Model Revisited |
|
|
241 | (10) |
|
6.7 Future Research--Multiple Imputation After More Than Three Decades |
|
|
251 | (6) |
|
|
254 | (3) |
|
A Matrix Algebra, Random Variables and Some Technical Results |
|
|
257 | (30) |
|
|
257 | (8) |
|
A.1.1 Vectors and Matrices |
|
|
257 | (3) |
|
|
260 | (2) |
|
A.1.3 Properties of Matrices |
|
|
262 | (3) |
|
A.2 Random Variables and Statistics |
|
|
265 | (11) |
|
|
266 | (1) |
|
|
267 | (2) |
|
A.2.3 Some Results on Expectations, Variances and Covariances |
|
|
269 | (1) |
|
A.2.4 Normal Distribution |
|
|
270 | (1) |
|
A.2.5 Conditional Normal Distribution |
|
|
271 | (1) |
|
A.2.6 Truncated Normal Distribution and Normal Sample Selection Model |
|
|
272 | (4) |
|
|
276 | (7) |
|
|
276 | (2) |
|
|
278 | (5) |
|
A.3.3 Information Criteria |
|
|
283 | (1) |
|
A.4 Multiple Imputation: Some Technical Results |
|
|
283 | (4) |
|
A.4.1 Derivation of (4.6), (4.8) and (4.9) |
|
|
284 | (1) |
|
A.4.2 Simplification of f(u(0) | u(i), 6) and p(θ | u(i)) |
|
|
284 | (1) |
|
|
285 | (2) |
Glossary |
|
287 | (2) |
Index |
|
289 | |