Muutke küpsiste eelistusi

E-raamat: Applied Number Theory

  • Formaat: PDF+DRM
  • Ilmumisaeg: 01-Sep-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319223216
  • Formaat - PDF+DRM
  • Hind: 61,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 01-Sep-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319223216

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This textbook effectively builds a bridge from basic number theory to recent advances in applied number theory. It presents the first unified account of the four major areas of application where number theory plays a fundamental role, namely cryptography, coding theory, quasi-Monte Carlo methods, and pseudorandom number generation, allowing the authors to delineate the manifold links and interrelations between these areas.Number theory, which Carl-Friedrich Gauss famously dubbed the queen of mathematics, has always been considered a very beautiful field of mathematics, producing lovely results and elegant proofs. While only very few real-life applications were known in the past, today number theory can be found in everyday life: in supermarket bar code scanners, in our cars" GPS systems, in online banking, etc.Starting with a brief introductory course on number theory in Chapter 1, which makes the book more accessible for undergraduates, the authors describe the four main appl

ication areas in Chapters 2-5 and offer a glimpse of advanced results that are presented without proofs and require more advanced mathematical skills. In the last chapter they review several further applications of number theory, ranging from check-digit systems to quantum computation and the organization of raster-graphics memory.Upper-level undergraduates, graduates and researchers in the field of number theory will find this book to be a valuable resource.

Preface.- 1 A Review of Number Theory and Algebra.- 2 Cryptography.- 3 Coding Theory.- 4 Quasi-Monte Carlo Methods.- 5 Pseudorandom Numbers.- 6 Further Applications.- Bibliography.- Index.

Arvustused

The authors succeed admirably in their aim of demonstrating that the theory of numbers has applications. The account is accessible, well-paced and unified and leads the reader along from the introductory ideas to recent advances. Each chapter has exercises inviting the reader to compute and fill in details in the proofs. (John H. Loxton, Mathematical Reviews, April, 2016)

The book is intended to be usable as a text . It would also be useful for those of us who received our training in number theory in the days before it had any applications and wanted to find out about them. The writing is clear and lively. The book is pleasant to the eyes, and in the hands. It is an estimable book that I hope is successful. (Underwood Dudley, MAA Reviews, maa.org, January, 2016)

1 A Review of Number Theory and Algebra 1(46)
1.1 Integer Arithmetic
1(4)
1.2 Congruences
5(7)
1.3 Groups and Characters
12(11)
1.3.1 Abelian Groups
12(7)
1.3.2 Characters
19(4)
1.4 Finite Fields
23(20)
1.4.1 Fundamental Properties
23(4)
1.4.2 Polynomials
27(6)
1.4.3 Constructions of Finite Fields
33(7)
1.4.4 Trace Map and Characters
40(3)
Exercises
43(4)
2 Cryptography 47(52)
2.1 Classical Cryptosystems
47(5)
2.1.1 Basic Principles
47(3)
2.1.2 Substitution Ciphers
50(2)
2.2 Symmetric Block Ciphers
52(4)
2.2.1 Data Encryption Standard (DES)
52(2)
2.2.2 Advanced Encryption Standard (AES)
54(2)
2.3 Public-Key Cryptosystems
56(11)
2.3.1 Background and Basics
56(3)
2.3.2 The RSA Cryptosystem
59(3)
2.3.3 Factorization Methods
62(5)
2.4 Cryptosystems Based on Discrete Logarithms
67(6)
2.4.1 The Cryptosystems
67(2)
2.4.2 Computing Discrete Logarithms
69(4)
2.5 Digital Signatures
73(4)
2.5.1 Digital Signatures from Public-Key Cryptosystems
73(2)
2.5.2 DSS and Related Schemes
75(2)
2.6 Threshold Schemes
77(3)
2.7 Primality Tests
80(9)
2.7.1 Fermat Test and Carmichael Numbers
80(3)
2.7.2 Solovay-Strassen Test
83(3)
2.7.3 Primality Tests for Special Numbers
86(3)
2.8 A Glimpse of Advanced Topics
89(5)
Exercises
94(5)
3 Coding Theory 99(86)
3.1 Introduction to Error-Correcting Codes
99(7)
3.1.1 Basic Definitions
99(3)
3.1.2 Error Correction
102(4)
3.2 Linear Codes
106(22)
3.2.1 Vector Spaces Over Finite Fields
106(3)
3.2.2 Fundamental Properties of Linear Codes
109(3)
3.2.3 Matrices Over Finite Fields
112(2)
3.2.4 Generator Matrix
114(3)
3.2.5 The Dual Code
117(1)
3.2.6 Parity-Check Matrix
118(3)
3.2.7 The Syndrome Decoding Algorithm
121(3)
3.2.8 The MacWilliams Identity
124(3)
3.2.9 Self-Orthogonal and Self-Dual Codes
127(1)
3.3 Cyclic Codes
128(23)
3.3.1 Cyclic Codes and Ideals
128(5)
3.3.2 The Generator Polynomial
133(2)
3.3.3 Generator Matrix
135(3)
3.3.4 Dual Code and Parity-Check Matrix
138(2)
3.3.5 Cyclic Codes from Roots
140(3)
3.3.6 Irreducible Cyclic Codes
143(3)
3.3.7 Decoding Algorithms for Cyclic Codes
146(5)
3.4 Bounds in Coding Theory
151(6)
3.4.1 Existence Theorems for Good Codes
151(2)
3.4.2 Limitations on the Parameters of Codes
153(4)
3.5 Some Special Linear Codes
157(16)
3.5.1 Hamming Codes
157(8)
3.5.2 Golay Codes
165(3)
3.5.3 Reed-Solomon Codes and BCH Codes
168(5)
3.6 A Glimpse of Advanced Topics
173(7)
Exercises
180(5)
4 Quasi-Monte Carlo Methods 185(122)
4.1 Numerical Integration and Uniform Distribution
185(31)
4.1.1 The One-Dimensional Case
185(19)
4.1.2 The Multidimensional Case
204(12)
4.2 Classical Low-Discrepancy Sequences
216(11)
4.2.1 Kronecker Sequences and Continued Fractions
216(7)
4.2.2 Halton Sequences
223(4)
4.3 Lattice Rules
227(24)
4.3.1 Good Lattice Points
227(17)
4.3.2 General Lattice Rules
244(7)
4.4 Nets and (t, s)-Sequences
251(48)
4.4.1 Basic Facts About Nets
251(7)
4.4.2 Digital Nets and Duality Theory
258(10)
4.4.3 Constructions of Digital Nets
268(19)
4.4.4 (t, s)-Sequences
287(7)
4.4.5 A Construction of (t, s)-Sequences
294(5)
4.5 A Glimpse of Advanced Topics
299(4)
Exercises
303(4)
5 Pseudorandom Numbers 307(60)
5.1 General Principles
307(9)
5.1.1 Random Number Generation
307(5)
5.1.2 Testing Pseudorandom Numbers
312(4)
5.2 The Linear Congruential Method
316(14)
5.2.1 Basic Properties
316(8)
5.2.2 Connections with Good Lattice Points
324(6)
5.3 Nonlinear Methods
330(20)
5.3.1 The General Nonlinear Method
330(10)
5.3.2 Inversive Methods
340(10)
5.4 Pseudorandom Bits
350(9)
5.5 A Glimpse of Advanced Topics
359(3)
Exercises
362(5)
6 Further Applications 367(58)
6.1 Check-Digit Systems
367(10)
6.1.1 Definition and Examples
367(2)
6.1.2 Neighbor Transpositions and Orthomorphisms
369(3)
6.1.3 Permutations for Detecting Other Frequent Errors
372(5)
6.2 Covering Sets and Packing Sets
377(4)
6.2.1 Covering Sets and Rewriting Schemes
377(2)
6.2.2 Packing Sets and Limited-Magnitude Error Correction
379(2)
6.3 Waring's Problem for Finite Fields
381(13)
6.3.1 Waring's Problem
381(2)
6.3.2 Addition Theorems
383(4)
6.3.3 Sum-Product Theorems
387(4)
6.3.4 Covering Codes
391(3)
6.4 Hadamard Matrices and Applications
394(15)
6.4.1 Basic Constructions
394(4)
6.4.2 Hadamard Codes
398(2)
6.4.3 Signal Correlation
400(2)
6.4.4 Hadamard Transform and Bent Functions
402(7)
6.5 Number Theory and Quantum Computation
409(6)
6.5.1 The Hidden Subgroup Problem
409(4)
6.5.2 Mutually Unbiased Bases
413(2)
6.6 Two More Applications
415(6)
6.6.1 Benford's Law
415(3)
6.6.2 An Application to Raster Graphics
418(3)
Exercises
421(4)
Bibliography 425(8)
Index 433
Harald Niederreiter: Full member, Austrian Academy of Sciences; Full member and former member of the presidium, German Academy of Natural Sciences Leopoldina; Cardinal Innitzer Prize for Natural Sciences in Austria; Invited speaker at ICM 1998 (Berlin) and ICIAM 2003 (Sydney): Singapore National Science Award 2003; Fellow of the American Mathematical Society

Arne Winterhof: Edmund and Rosa Hlawka Prize 2004; Advancement Award of the Austrian Mathematical Society 2010