1 A Review of Number Theory and Algebra |
|
1 | (46) |
|
|
1 | (4) |
|
|
5 | (7) |
|
1.3 Groups and Characters |
|
|
12 | (11) |
|
|
12 | (7) |
|
|
19 | (4) |
|
|
23 | (20) |
|
1.4.1 Fundamental Properties |
|
|
23 | (4) |
|
|
27 | (6) |
|
1.4.3 Constructions of Finite Fields |
|
|
33 | (7) |
|
1.4.4 Trace Map and Characters |
|
|
40 | (3) |
|
|
43 | (4) |
2 Cryptography |
|
47 | (52) |
|
2.1 Classical Cryptosystems |
|
|
47 | (5) |
|
|
47 | (3) |
|
2.1.2 Substitution Ciphers |
|
|
50 | (2) |
|
2.2 Symmetric Block Ciphers |
|
|
52 | (4) |
|
2.2.1 Data Encryption Standard (DES) |
|
|
52 | (2) |
|
2.2.2 Advanced Encryption Standard (AES) |
|
|
54 | (2) |
|
2.3 Public-Key Cryptosystems |
|
|
56 | (11) |
|
2.3.1 Background and Basics |
|
|
56 | (3) |
|
2.3.2 The RSA Cryptosystem |
|
|
59 | (3) |
|
2.3.3 Factorization Methods |
|
|
62 | (5) |
|
2.4 Cryptosystems Based on Discrete Logarithms |
|
|
67 | (6) |
|
|
67 | (2) |
|
2.4.2 Computing Discrete Logarithms |
|
|
69 | (4) |
|
|
73 | (4) |
|
2.5.1 Digital Signatures from Public-Key Cryptosystems |
|
|
73 | (2) |
|
2.5.2 DSS and Related Schemes |
|
|
75 | (2) |
|
|
77 | (3) |
|
|
80 | (9) |
|
2.7.1 Fermat Test and Carmichael Numbers |
|
|
80 | (3) |
|
2.7.2 Solovay-Strassen Test |
|
|
83 | (3) |
|
2.7.3 Primality Tests for Special Numbers |
|
|
86 | (3) |
|
2.8 A Glimpse of Advanced Topics |
|
|
89 | (5) |
|
|
94 | (5) |
3 Coding Theory |
|
99 | (86) |
|
3.1 Introduction to Error-Correcting Codes |
|
|
99 | (7) |
|
|
99 | (3) |
|
|
102 | (4) |
|
|
106 | (22) |
|
3.2.1 Vector Spaces Over Finite Fields |
|
|
106 | (3) |
|
3.2.2 Fundamental Properties of Linear Codes |
|
|
109 | (3) |
|
3.2.3 Matrices Over Finite Fields |
|
|
112 | (2) |
|
|
114 | (3) |
|
|
117 | (1) |
|
3.2.6 Parity-Check Matrix |
|
|
118 | (3) |
|
3.2.7 The Syndrome Decoding Algorithm |
|
|
121 | (3) |
|
3.2.8 The MacWilliams Identity |
|
|
124 | (3) |
|
3.2.9 Self-Orthogonal and Self-Dual Codes |
|
|
127 | (1) |
|
|
128 | (23) |
|
3.3.1 Cyclic Codes and Ideals |
|
|
128 | (5) |
|
3.3.2 The Generator Polynomial |
|
|
133 | (2) |
|
|
135 | (3) |
|
3.3.4 Dual Code and Parity-Check Matrix |
|
|
138 | (2) |
|
3.3.5 Cyclic Codes from Roots |
|
|
140 | (3) |
|
3.3.6 Irreducible Cyclic Codes |
|
|
143 | (3) |
|
3.3.7 Decoding Algorithms for Cyclic Codes |
|
|
146 | (5) |
|
3.4 Bounds in Coding Theory |
|
|
151 | (6) |
|
3.4.1 Existence Theorems for Good Codes |
|
|
151 | (2) |
|
3.4.2 Limitations on the Parameters of Codes |
|
|
153 | (4) |
|
3.5 Some Special Linear Codes |
|
|
157 | (16) |
|
|
157 | (8) |
|
|
165 | (3) |
|
3.5.3 Reed-Solomon Codes and BCH Codes |
|
|
168 | (5) |
|
3.6 A Glimpse of Advanced Topics |
|
|
173 | (7) |
|
|
180 | (5) |
4 Quasi-Monte Carlo Methods |
|
185 | (122) |
|
4.1 Numerical Integration and Uniform Distribution |
|
|
185 | (31) |
|
4.1.1 The One-Dimensional Case |
|
|
185 | (19) |
|
4.1.2 The Multidimensional Case |
|
|
204 | (12) |
|
4.2 Classical Low-Discrepancy Sequences |
|
|
216 | (11) |
|
4.2.1 Kronecker Sequences and Continued Fractions |
|
|
216 | (7) |
|
|
223 | (4) |
|
|
227 | (24) |
|
4.3.1 Good Lattice Points |
|
|
227 | (17) |
|
4.3.2 General Lattice Rules |
|
|
244 | (7) |
|
4.4 Nets and (t, s)-Sequences |
|
|
251 | (48) |
|
4.4.1 Basic Facts About Nets |
|
|
251 | (7) |
|
4.4.2 Digital Nets and Duality Theory |
|
|
258 | (10) |
|
4.4.3 Constructions of Digital Nets |
|
|
268 | (19) |
|
|
287 | (7) |
|
4.4.5 A Construction of (t, s)-Sequences |
|
|
294 | (5) |
|
4.5 A Glimpse of Advanced Topics |
|
|
299 | (4) |
|
|
303 | (4) |
5 Pseudorandom Numbers |
|
307 | (60) |
|
|
307 | (9) |
|
5.1.1 Random Number Generation |
|
|
307 | (5) |
|
5.1.2 Testing Pseudorandom Numbers |
|
|
312 | (4) |
|
5.2 The Linear Congruential Method |
|
|
316 | (14) |
|
|
316 | (8) |
|
5.2.2 Connections with Good Lattice Points |
|
|
324 | (6) |
|
|
330 | (20) |
|
5.3.1 The General Nonlinear Method |
|
|
330 | (10) |
|
|
340 | (10) |
|
|
350 | (9) |
|
5.5 A Glimpse of Advanced Topics |
|
|
359 | (3) |
|
|
362 | (5) |
6 Further Applications |
|
367 | (58) |
|
|
367 | (10) |
|
6.1.1 Definition and Examples |
|
|
367 | (2) |
|
6.1.2 Neighbor Transpositions and Orthomorphisms |
|
|
369 | (3) |
|
6.1.3 Permutations for Detecting Other Frequent Errors |
|
|
372 | (5) |
|
6.2 Covering Sets and Packing Sets |
|
|
377 | (4) |
|
6.2.1 Covering Sets and Rewriting Schemes |
|
|
377 | (2) |
|
6.2.2 Packing Sets and Limited-Magnitude Error Correction |
|
|
379 | (2) |
|
6.3 Waring's Problem for Finite Fields |
|
|
381 | (13) |
|
|
381 | (2) |
|
|
383 | (4) |
|
6.3.3 Sum-Product Theorems |
|
|
387 | (4) |
|
|
391 | (3) |
|
6.4 Hadamard Matrices and Applications |
|
|
394 | (15) |
|
6.4.1 Basic Constructions |
|
|
394 | (4) |
|
|
398 | (2) |
|
|
400 | (2) |
|
6.4.4 Hadamard Transform and Bent Functions |
|
|
402 | (7) |
|
6.5 Number Theory and Quantum Computation |
|
|
409 | (6) |
|
6.5.1 The Hidden Subgroup Problem |
|
|
409 | (4) |
|
6.5.2 Mutually Unbiased Bases |
|
|
413 | (2) |
|
6.6 Two More Applications |
|
|
415 | (6) |
|
|
415 | (3) |
|
6.6.2 An Application to Raster Graphics |
|
|
418 | (3) |
|
|
421 | (4) |
Bibliography |
|
425 | (8) |
Index |
|
433 | |