Companion Website |
|
xv | |
About the Authors |
|
xvii | |
Preface |
|
xix | |
Acknowledgements |
|
xxi | |
1 Research and statistics |
|
1 | (22) |
|
1.1 The methodology of statistical research |
|
|
2 | (1) |
|
1.2 The statistical method |
|
|
3 | (2) |
|
1.3 The logic behind statistical inference |
|
|
5 | (9) |
|
1.3.1 Central limit theorem |
|
|
5 | (2) |
|
|
7 | (1) |
|
|
8 | (3) |
|
|
11 | (1) |
|
|
11 | (2) |
|
1.3.6 Why do I need significance levels if I am investigating the whole population? |
|
|
13 | (1) |
|
1.4 General laws and theories |
|
|
14 | (1) |
|
1.4.1 Objectivity and critical realism |
|
|
14 | (1) |
|
|
15 | (1) |
|
1.6 Quantitative research papers |
|
|
16 | (3) |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
20 | (1) |
|
|
20 | (1) |
|
|
20 | (1) |
|
|
21 | (2) |
2 Introduction to stata |
|
23 | (30) |
|
|
24 | (4) |
|
2.1.1 The Stata interface |
|
|
24 | (1) |
|
|
25 | (3) |
|
2.2 Entering and importing data into Stata |
|
|
28 | (1) |
|
|
28 | (1) |
|
|
28 | (1) |
|
|
29 | (10) |
|
|
30 | (1) |
|
|
31 | (2) |
|
2.3.3 Making changes to variables |
|
|
33 | (2) |
|
2.3.4 Generating variables |
|
|
35 | (3) |
|
|
38 | (1) |
|
2.3.6 Labelling variables |
|
|
38 | (1) |
|
2.4 Descriptive statistics and graphs |
|
|
39 | (7) |
|
2.4.1 Frequency distributions |
|
|
39 | (2) |
|
|
41 | (3) |
|
|
44 | (1) |
|
|
45 | (1) |
|
|
46 | (1) |
|
2.5 Bivariate inferential statistics |
|
|
46 | (4) |
|
|
47 | (1) |
|
|
47 | (1) |
|
2.5.3 Analysis of variance (ANOVA) |
|
|
48 | (1) |
|
|
49 | (1) |
|
|
50 | (1) |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
52 | (1) |
3 Simple (bivariate) regression |
|
53 | (28) |
|
3.1 What is regression analysis? |
|
|
54 | (1) |
|
3.2 Simple linear regression analysis |
|
|
55 | (12) |
|
3.2.1 Ordinary least squares |
|
|
58 | (2) |
|
|
60 | (3) |
|
3.2.3 Hypothesis test for slope coefficient |
|
|
63 | (3) |
|
3.2.4 Prediction in linear regression |
|
|
66 | (1) |
|
|
67 | (4) |
|
|
71 | (1) |
|
|
71 | (1) |
|
|
72 | (1) |
|
|
72 | (1) |
|
|
72 | (1) |
|
|
72 | (1) |
|
|
73 | (1) |
|
|
74 | (7) |
|
A3.1 Calculating a bivariate regression |
|
|
74 | (4) |
|
A3.2 Calculating standard errors |
|
|
78 | (3) |
4 Multiple regression |
|
81 | (16) |
|
4.1 Multiple linear regression analysis |
|
|
82 | (7) |
|
|
83 | (1) |
|
4.1.2 Goodness of fit and the F-test |
|
|
84 | (1) |
|
|
85 | (1) |
|
4.1.4 Partial slope coefficients |
|
|
86 | (1) |
|
4.1.5 Prediction in multiple regression |
|
|
87 | (1) |
|
4.1.6 Standardization and relative importance |
|
|
88 | (1) |
|
|
89 | (6) |
|
|
95 | (1) |
|
|
95 | (1) |
|
|
95 | (1) |
|
|
96 | (1) |
|
|
96 | (1) |
|
|
96 | (1) |
|
|
96 | (1) |
5 Dummy-variable regression |
|
97 | (24) |
|
5.1 Why dummy-variable regression? |
|
|
98 | (3) |
|
5.1.1 Creating dummy variables |
|
|
98 | (2) |
|
5.1.2 The logic behind dummy-variable regression |
|
|
100 | (1) |
|
5.2 Regression with one dummy variable |
|
|
101 | (2) |
|
|
102 | (1) |
|
5.3 Regression with one dummy variable and a covariate |
|
|
103 | (3) |
|
|
105 | (1) |
|
5.4 Regression with more than one dummy variable |
|
|
106 | (6) |
|
|
108 | (1) |
|
5.4.2 Comparing the included groups |
|
|
109 | (3) |
|
5.5 Regression with more than one dummy variable and a covariate |
|
|
112 | (3) |
|
|
113 | (2) |
|
5.6 Regression with two separate sets of dummy variables |
|
|
115 | (4) |
|
|
117 | (2) |
|
|
119 | (1) |
|
|
119 | (1) |
|
|
119 | (1) |
|
|
119 | (1) |
|
|
120 | (1) |
|
|
120 | (1) |
|
|
120 | (1) |
6 Interaction/moderation effects using regression |
|
121 | (24) |
|
6.1 Interaction/moderation effect |
|
|
122 | (2) |
|
6.2 Product-term approach |
|
|
124 | (18) |
|
6.2.1 Interaction between a continuous predictor and a continuous moderator |
|
|
126 | (4) |
|
6.2.2 Interaction between a continuous predictor and a dummy moderator |
|
|
130 | (3) |
|
6.2.3 Interaction between a dummy predictor and a dummy moderator |
|
|
133 | (3) |
|
6.2.4 Interaction between a continuous predictor and a polytomous moderator |
|
|
136 | (6) |
|
|
142 | (1) |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
143 | (1) |
|
|
143 | (1) |
|
|
143 | (1) |
|
|
143 | (2) |
7 Linear regression assumptions and diagnostics |
|
145 | (32) |
|
7.1 Correct specification of the model |
|
|
147 | (13) |
|
7.1.1 All relevant and no irrelevant X-variables |
|
|
147 | (2) |
|
7.1.2 Linearity and polynomial regression |
|
|
149 | (9) |
|
|
158 | (1) |
|
7.1.4 Absence of multicollinearity |
|
|
158 | (2) |
|
7.2 Assumptions about residuals |
|
|
160 | (10) |
|
7.2.1 The error term has a conditional mean of zero |
|
|
160 | (1) |
|
|
161 | (6) |
|
7.2.3 Uncorrelated errors |
|
|
167 | (1) |
|
7.2.4 Normally distributed errors |
|
|
168 | (2) |
|
7.3 Influential observations |
|
|
170 | (4) |
|
|
170 | (1) |
|
|
171 | (1) |
|
|
172 | (2) |
|
|
174 | (1) |
|
|
174 | (1) |
|
|
174 | (1) |
|
|
175 | (1) |
|
|
175 | (1) |
|
|
175 | (1) |
|
|
175 | (2) |
8 Logistic regression |
|
177 | (34) |
|
8.1 What is logistic regression? |
|
|
179 | (5) |
|
8.1.1 Tests of significance |
|
|
182 | (2) |
|
8.2 Assumptions of logistic regression |
|
|
184 | (9) |
|
|
185 | (8) |
|
|
193 | (2) |
|
|
195 | (3) |
|
|
198 | (1) |
|
8.6 Multinomial logistic regression |
|
|
199 | (5) |
|
8.7 Ordered logistic regression |
|
|
204 | (3) |
|
|
207 | (1) |
|
|
207 | (1) |
|
|
208 | (1) |
|
|
208 | (1) |
|
|
208 | (1) |
|
|
209 | (1) |
|
|
209 | (2) |
9 Survival analysis |
|
211 | (20) |
|
|
213 | (1) |
|
|
214 | (1) |
|
|
215 | (1) |
|
|
216 | (1) |
|
|
217 | (2) |
|
9.6 Example in Stata: Life tables and Kaplan-Meier |
|
|
219 | (3) |
|
9.6.1 Kaplan-Meier estimator |
|
|
219 | (2) |
|
|
221 | (1) |
|
9.7 Proportional hazard models (Cox regression) |
|
|
222 | (5) |
|
9.7.1 Assumption of proportional hazard model |
|
|
223 | (1) |
|
9.7.2 Extending the Cox regression model (time-varying covariates) |
|
|
224 | (1) |
|
|
225 | (1) |
|
|
225 | (2) |
|
|
227 | (1) |
|
|
228 | (1) |
|
|
228 | (1) |
|
|
228 | (1) |
|
|
228 | (1) |
|
|
229 | (1) |
|
|
229 | (2) |
10 Multilevel analysis |
|
231 | (40) |
|
|
233 | (4) |
|
10.1.1 Statistical reasons for using multilevel analysis |
|
|
236 | (1) |
|
10.2 Empty or intercept-only model |
|
|
237 | (4) |
|
|
239 | (2) |
|
10.3 Variance partition (intraclass correlation) |
|
|
241 | (1) |
|
10.4 Random intercept model |
|
|
242 | (2) |
|
10.5 Level-2 explanatory variables |
|
|
244 | (3) |
|
10.5.1 How much of the dependent variable is explained? |
|
|
246 | (1) |
|
10.6 Logistic multilevel model |
|
|
247 | (1) |
|
10.7 Random coefficient (slope) model |
|
|
248 | (3) |
|
|
251 | (3) |
|
|
254 | (5) |
|
10.9.1 Cross-classified multilevel model |
|
|
258 | (1) |
|
|
259 | (1) |
|
|
260 | (7) |
|
10.11.1 Deviation from intercept and random slope regression line |
|
|
263 | (2) |
|
|
265 | (2) |
|
|
267 | (1) |
|
|
267 | (1) |
|
|
268 | (1) |
|
|
268 | (1) |
|
|
268 | (1) |
|
|
268 | (1) |
|
|
269 | (2) |
11 Panel data analysis |
|
271 | (44) |
|
|
272 | (3) |
|
|
275 | (5) |
|
|
280 | (3) |
|
11.4 Fixed effects (within estimator) |
|
|
283 | (10) |
|
11.4.1 Explaining fixed effects |
|
|
285 | (6) |
|
11.4.2 Summary of fixed effects |
|
|
291 | (1) |
|
11.4.3 Time-fixed effects |
|
|
292 | (1) |
|
|
293 | (2) |
|
11.6 Time-series cross-section methods |
|
|
295 | (9) |
|
11.6.1 Testing for non-stationarity |
|
|
299 | (3) |
|
|
302 | (1) |
|
|
303 | (1) |
|
11.7 Binary dependent variables |
|
|
304 | (4) |
|
11.8 Arellano-Bond estimator |
|
|
308 | (3) |
|
|
311 | (1) |
|
|
311 | (1) |
|
|
311 | (1) |
|
|
311 | (1) |
|
|
312 | (1) |
|
|
312 | (1) |
|
|
312 | (3) |
12 Time-series analysis |
|
315 | (34) |
|
|
316 | (9) |
|
12.1.1 Trends and smoothing |
|
|
317 | (3) |
|
|
320 | (1) |
|
|
320 | (3) |
|
12.1.4 A prelude to forecasting |
|
|
323 | (2) |
|
|
325 | (3) |
|
12.2.1 Testing for autocorrelation |
|
|
326 | (1) |
|
12.2.2 How to cope with first-order autocorrelation |
|
|
327 | (1) |
|
|
328 | (6) |
|
12.3.1 Unit roots: testing for non-stationarity |
|
|
329 | (3) |
|
|
332 | (2) |
|
|
334 | (12) |
|
12.4.1 Autoregressive models |
|
|
335 | (1) |
|
12.4.2 ARIMA model (single time series) |
|
|
336 | (5) |
|
12.4.3 Vector autoregression (multiple time series) |
|
|
341 | (5) |
|
|
346 | (1) |
|
|
346 | (1) |
|
|
346 | (1) |
|
|
346 | (1) |
|
|
347 | (1) |
|
|
347 | (1) |
|
|
347 | (2) |
13 Exploratory factor analysis |
|
349 | (22) |
|
13.1 What is factor analysis? |
|
|
350 | (2) |
|
13.1.1 What is factor analysis used for? |
|
|
352 | (1) |
|
13.2 The factor analysis process |
|
|
352 | (9) |
|
13.2.1 Extracting the factors |
|
|
353 | (3) |
|
13.2.2 Determining the number of factors |
|
|
356 | (1) |
|
13.2.3 Rotating the factors |
|
|
357 | (3) |
|
13.2.4 Refining and interpreting the factors |
|
|
360 | (1) |
|
13.3 Composite scores and reliability testing |
|
|
361 | (2) |
|
|
363 | (5) |
|
|
368 | (1) |
|
|
368 | (1) |
|
|
369 | (1) |
|
|
369 | (1) |
|
|
369 | (1) |
|
|
369 | (1) |
|
|
370 | (1) |
14 Structural equation modelling and confirmatory factor analysis |
|
371 | (28) |
|
14.1 What is structural equation modelling? |
|
|
372 | (2) |
|
14.1.1 Types of structural equation modelling |
|
|
373 | (1) |
|
14.2 Confirmatory factor analysis |
|
|
374 | (13) |
|
14.2.1 Model specification |
|
|
375 | (1) |
|
14.2.2 Model identification |
|
|
376 | (2) |
|
14.2.3 Parameter estimation |
|
|
378 | (1) |
|
|
379 | (7) |
|
14.2.5 Model modification |
|
|
386 | (1) |
|
14.3 Latent path analysis |
|
|
387 | (8) |
|
14.3.1 Specification of the LPA model |
|
|
388 | (1) |
|
|
389 | (3) |
|
|
392 | (3) |
|
|
395 | (1) |
|
|
396 | (1) |
|
|
396 | (1) |
|
|
396 | (1) |
|
|
397 | (1) |
|
|
397 | (1) |
|
|
397 | (2) |
15 Advanced statistical techniques |
|
399 | (36) |
|
|
400 | (7) |
|
15.1.1 Poisson regression |
|
|
400 | (4) |
|
15.1.2 Negative binomial regression |
|
|
404 | (3) |
|
15.2 Instrumental regression |
|
|
407 | (6) |
|
15.2.1 Two-stage estimation |
|
|
407 | (2) |
|
|
409 | (4) |
|
15.3 Transformation of variables |
|
|
413 | (6) |
|
15.3.1 Skewness and kurtosis |
|
|
413 | (3) |
|
|
416 | (3) |
|
|
419 | (2) |
|
|
421 | (10) |
|
15.5.1 Traditional methods for handling missing data |
|
|
422 | (3) |
|
15.5.2 Multiple imputation |
|
|
425 | (6) |
|
|
431 | (1) |
|
|
431 | (1) |
|
|
431 | (1) |
|
|
431 | (1) |
|
|
432 | (1) |
|
|
432 | (1) |
|
|
432 | (3) |
16 Programming and dynamic reporting using Stata |
|
435 | (22) |
|
16.1 Programming features of Stata |
|
|
436 | (11) |
|
|
436 | (3) |
|
|
439 | (3) |
|
|
442 | (1) |
|
16.1.4 Stored r- and e-class objects |
|
|
443 | (2) |
|
16.1.5 Creating your own Stata command |
|
|
445 | (2) |
|
16.2 Reproducible and dynamic reporting |
|
|
447 | (8) |
|
16.2.1 Dynamic reporting using dyndoc |
|
|
449 | (4) |
|
16.2.2 Dynamic reporting using putdocx |
|
|
453 | (1) |
|
16.2.3 dyndoc versus putdocx |
|
|
454 | (1) |
|
|
455 | (1) |
|
|
455 | (1) |
|
|
455 | (1) |
|
|
455 | (1) |
|
|
456 | (1) |
|
|
456 | (1) |
Index |
|
457 | |