Muutke küpsiste eelistusi

E-raamat: Applying Big Data Analytics in Bioinformatics and Medicine

  • Formaat - PDF+DRM
  • Hind: 302,57 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Many aspects of modern life have become personalized, yet healthcare practices have been lagging behind in this trend. It is now becoming more common to use big data analysis to improve current healthcare and medicinal systems, and offer better health services to all citizens.

Applying Big Data Analytics in Bioinformatics and Medicine is a comprehensive reference source that overviews the current state of medical treatments and systems and offers emerging solutions for a more personalized approach to the healthcare field. Featuring coverage on relevant topics that include smart data, proteomics, medical data storage, and drug design, this publication is an ideal resource for medical professionals, healthcare practitioners, academicians, and researchers interested in the latest trends and techniques in personalized medicine.
Preface xvi
Acknowledgment xxvi
Section 1 Introduction to Bioinformatics in Medicine and Medical Systems
Chapter 1 Bioinformatics as Applied to Medicine: Challenges Faced Moving from Big Data to Smart Data to Wise Data
1(25)
Paraskevi Papadopoulou
Miltiadis Lytras
Christina Marouli
Chapter 2 Bioinformatics: Applications and Implications
26(22)
Kijpokin Kasemsap
Chapter 3 Protein Structure Prediction
48(32)
Hirak Jyoti Chakraborty
Aditi Gangopadhyay
Sayak Ganguli
Abhijit Datta
Chapter 4 Proteomics in Personalized Medicine: An Evolution Not a Revolution
80(19)
Srijan Goswam
Chapter 5 The Much Needed Security and Data Reforms of Cloud Computing in Medical Data Storage
99(16)
Sushma Munugala
Gagandeep K. Brar
Ali Syed
Azeem Mohammad
Malka N. Halgamuge
Section 2 Bioinformatics in the Fields of Genomics and Proteomics as Applied to Medicine, Health Issues, and Medical Systems
Chapter 6 Informatics and Data Analytics to Support Exposome-Based Discovery: Part 1 Assessment of External and Internal Exposure
115(30)
Dimosthenis A. Sarigiannis
Spyros P. Karakitsios
Evangelos Handakas
Krystalia Papadaki
Dimitris Chapizanis
Alberto Gotti
Chapter 7 Informatics and Data Analytics to Support Exposome-Based Discovery: Part 2 - Computational Exposure Biology
145(43)
Dimosthenis A. Sarigiannis
Alberto Gotti
Evangelos Handakas
Spyros P. Karakitsios
Chapter 8 Transcriptomics to Metabolomics: A Network Perspective for Big Data
188(19)
Ankush Bansal
Pulkit Anupam Srivastava
Chapter 9 Protein Docking and Drug Design
207(36)
Aditi Gangopadhyay
Hirak Jyoti Chakraborty
Abhijit Datta
Section 3 Big Data Analytics for Medical and Health informatics
Chapter 10 Effective and Efficient Business Intelligence Dashboard Design: Gestalt Theory in Dutch Long-Term and Chronic Healthcare
243(29)
Marco Spruit
Max Lammertink
Chapter 11 Role of Online Data from Search Engine and Social Media in Healthcare Informatics
272(22)
M. Saqib Nawaz
Raza Ul Mustafa
M. Ikram Ullah Lali
Chapter 12 An Optimized Semi-Supervised Learning Approach for High Dimensional Datasets
294(28)
Nesma Settouti
Mostafa El Habib Daho
Mohammed El Amine Bechar
Mohammed Amine Chikh
Chapter 13 Predicting Patterns in Hospital Admission Data
322(15)
Jesus Manuel Puentes Gutierrez
Salvador Sanchez-Alonso
Miguel-Angel Sicilia
Elena Garcia Barriocanal
Chapter 14 Selection of Pathway Markers for Cancer Using Collaborative Binary Multi-Swarm Optimization
337(27)
Prativa Agarwalla
Sumitra Mukhopadhyay
Chapter 15 Applying Bayesian Networks in the Early Diagnosis of Bulimia and Anorexia Nervosa in Adolescents: Applying Bayesian Networks in Early Diagnosis in Adolescents
364(16)
Placido Rogerio Pinheiro
Mirian Caliope Dantas Pinheiro
Victor Camera Damasceno
Marley Costa Marques
Raquel Souza Bino Araujo
Layane Mayara Gomes Castelo Branco
Chapter 16 Image Processing Including Medical Liver Imaging: Medical Image Processing from Big Data Perspective, Ultrasound Liver Images, Challenges
380(13)
Suganya Ramamoorthy
Rajaram Sivasubramaniam
Compilation of References 393(61)
About the Contributors 454(9)
Index 463
Miltiadis D. Lytras, American College of Greece, Greece.

Paraskevi Papadopoulou, American College of Greece, Greece.