Muutke küpsiste eelistusi

E-raamat: Approximate Arithmetic Circuit Architectures for FPGA-based Systems

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 27-Feb-2023
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031212949
  • Formaat - EPUB+DRM
  • Hind: 86,44 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 27-Feb-2023
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031212949

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book presents various novel architectures for FPGA-optimized accurate and approximate operators, their detailed accuracy and performance analysis, various techniques to model the behavior of approximate operators, and thorough application-level analysis to evaluate the impact of approximations on the final output quality and performance metrics. As multiplication is one of the most commonly used and computationally expensive operations in various error-resilient applications such as digital signal and image processing and machine learning algorithms, this book particularly focuses on this operation. The book starts by elaborating on the various sources of error resilience and opportunities available for approximations on various layers of the computation stack. It then provides a detailed description of the state-of-the-art approximate computing-related works and highlights their limitations.

Introduction.- Preliminaries.- Accurate Multipliers.- Approximate Multipliers.- Designing Application-specific Approximate Operators.- A Framework for Cross-layer Approximations.- Conclusions.

Salim Ullah received the Ph.D. degree with Summa Cum Laude in Computer Science, from Technische Universität Dresden (TUD), Dresden, Germany, in 2021. Currently, he is a postdoctoral research associate at the Chair of Processor Design, TUD, Germany. His current research interests include the design of approximate arithmetic units, approximate caches, reconfigurable computing, and hardware accelerators of AI and machine learning algorithms.





           





Akash Kumar received the joint Ph.D. degree in electrical engineering and embedded systems from the Eindhoven University of Technology, Eindhoven, The Netherlands, and the National University of Singapore (NUS), Singapore, in 2009. From 2009 to 2015, he was with NUS. He is currently a Professor at Technische Universität Dresden, Dresden, Germany, where he is directing the Chair of Processor Design. His current research interests include the design, analysis, and resource management of low-power and fault-tolerant-embedded multiprocessor systems.