Muutke küpsiste eelistusi

E-raamat: Approximate Commutative Algebra

Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Approximate Commutative Algebra is an emerging field of research which endeavours to bridge the gap between traditional exact Computational Commutative Algebra and approximate numerical computation. The last 50 years have seen enormous progress in the realm of exact Computational Commutative Algebra, and given the importance of polynomials in scientific modelling, it is very natural to want to extend these ideas to handle approximate, empirical data deriving from physical measurements of phenomena in the real world. In this volume nine contributions from established researchers describe various approaches to tackling a variety of problems arising in Approximate Commutative Algebra.
From Oil Fields to Hilbert Schemes
1(54)
Martin Kreuzer
Hennie Poulisse
Lorenzo Robbiano
A Problem Arising in Industrial Mathematics
5(5)
Border Bases
10(8)
The Eigenvalue Method for Solving Polynomial Systems
18(4)
Approximate Vanishing Ideals
22(9)
Stable Order Ideals
31(9)
Border Basis and Grobner Basis Schemes
40(15)
References
53(2)
Numerical Decomposition of the Rank-Deficiency Set of a Matrix of Multivariate Polynomials
55(24)
Daniel J. Bates
Jonathan D. Hauenstein
Chris Peterson
Andrew J. Sommese
Background Material
59(4)
Genericity and Randomness
59(1)
The Numerical Irreducible Decomposition
60(2)
Images of Algebraic Sets
62(1)
Random Coordinate Patches on Grassmannians
63(2)
Finding Rank-Dropping Sets
65(2)
Generalizations
67(2)
Applications
69(2)
Support of a Module
69(1)
Degeneracy Sets of the Differential of a Map
70(1)
Singular Sets
70(1)
Implementation Details and Computational Results
71(1)
Singular Set for a Matrix
71(1)
Singular Set for a Hessian Matrix
71(1)
Singular Solutions for a Polynomial System
72(1)
The Singular Set of the Reduction of an Algebraic Set
72(7)
Equations Defining an Algebraic Set
73(2)
Computing the Singular Set of the Reduction of an Algebraic Set
75(1)
References
75(4)
Towards Geometric Completion of Differential Systems by Points
79(20)
Wenyuan Wu
Greg Reid
Oleg Golubitsky
Introduction
80(2)
Historical Background
80(1)
Exact Differential Elimination Algorithms
81(1)
Outline of Paper
82(1)
Zero Sets of PDE
82(1)
Witness Sets of PDE
83(3)
Witness Jet Points
84(1)
Witness Tangent Space
85(1)
Geometric Lifting and Singular Components
86(2)
Determination of Singular Components of an ODE using Numerical Jet Geometry
88(2)
Determination of Singular Components of a PDE System
90(4)
Discussion
94(5)
References
95(4)
Geometric Involutive Bases and Applications to Approximate Commutative Algebra
99(26)
Robin Scott
Greg Reid
Wenyuan Wu
Lihong Zhi
Jet Spaces and Geometric Involutive Bases
102(5)
Jet Geometry and Jet Space
102(1)
Prolongation and Projection
103(2)
The Symbol
105(1)
Indices and Cartan Characters
105(1)
The Cartan-Kuranishi Prolongation Theorem
106(1)
Geometric Projected Involutive Bases and Nearby Systems
107(5)
Geometric Projected Involutive Bases
107(1)
Approximately Involutive Systems
108(2)
Nearby Systems: Structure and Convergence
110(2)
The Hilbert Function
112(2)
Definition and Key Properties
112(1)
Connection with Involutive Systems
112(1)
A Motivational Example
113(1)
Applications
114(5)
Ideal Membership
114(1)
Grobner Bases for Polynomial Systems
115(4)
4.5 Appendix
119(6)
4.5.1 The SVD, ε-Rank, and τ-Rank
119(1)
4.5.2 STLS
120(1)
4.5.3 STLS-RREF
121(2)
References
123(2)
Regularization and Matrix Computation in Numerical Polynomial Algebra
125(38)
Zhonggang Zeng
Notation and preliminaries
127(7)
Notation
127(1)
Numerical rank and kernel
128(3)
The linear and nonlinear least squares problems
131(3)
Formulation of the approximate solution
134(8)
The ill-posed problem and the pejorative manifold
134(4)
The three-strikes principle for removing ill-posedness
138(4)
Matrix computation arising in polynomial algebra
142(8)
Approximate GCD
142(2)
The multiplicity structure
144(2)
Numerical elimination
146(1)
Approximate irreducible factorization
147(3)
A subspace strategy for efficient matrix computations
150(5)
The closedness subspace for multiplicity matrices
150(3)
The fewnomial subspace strategy for multivariate polynomials
153(2)
Software development
155(8)
References
158(5)
Ideal Interpolation: Translations to and from Algebraic Geometry
163(30)
Boris Shekhtman
Introduction
163(7)
Ideal projectors
164(1)
Parametrization
165(2)
Multiplication operators
167(1)
Duality
168(2)
Hermite Projectors and Their Relatives
170(9)
Perturbations of ideal projectors
170(1)
Lagrange and curvilinear projectors
171(2)
Limits of Lagrange and curvilinear projectors
173(3)
Two problems
176(1)
Existence of non-Hermite projectors
177(1)
Description of non-Hermite projectors
178(1)
Projectors in three variables
179(6)
Nested Ideal Interpolation
180(1)
Ideal restrictions
181(1)
A conjecture of Tomas Sauer
182(1)
Divided differences
183(1)
Ideal decomposition
183(2)
Error Formula
185(2)
Loss of Haar
187(6)
References
190(3)
An Introduction to Regression and Errors in Variables from an Algebraic Viewpoint
193(12)
Eva Riccomagno
Henry P. Wynn
Regression and the X -matrix
193(3)
Orthogonal polynomials and the residual space
196(2)
The fitted function and its variance
198(1)
``Errors in variables'' analysis of polynomial models
199(2)
Comments
201(1)
Acknowledgements
202(3)
References
202(3)
ApCoA = Embedding Commutative Algebra into Analysis
205(14)
Hans J. Stetter
Introduction
205(1)
Approximate Commutative Algebra
206(1)
Empirical Data
207(1)
Valid Results; Validity Checking of Results
208(1)
Data → Result Mappings
209(1)
Analytic View of Data → Result Mappings
210(1)
Condition
211(2)
Overdetermination
213(1)
Syzygies
214(1)
Singularities
215(2)
Conclusions
217(2)
References
217(2)
Exact Certification in Global Polynomial Optimization Via Rationalizing Sums-Of-Squares
219
Erich Kaltofen
References
225