Muutke küpsiste eelistusi

E-raamat: Approximating Perfection: A Mathematician's Journey into the World of Mechanics

  • Formaat: 232 pages
  • Ilmumisaeg: 28-Jul-2015
  • Kirjastus: Princeton University Press
  • Keel: eng
  • ISBN-13: 9781400873258
  • Formaat - EPUB+DRM
  • Hind: 27,62 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 232 pages
  • Ilmumisaeg: 28-Jul-2015
  • Kirjastus: Princeton University Press
  • Keel: eng
  • ISBN-13: 9781400873258

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 


This is a book for those who enjoy thinking about how and why Nature can be described using mathematical tools.Approximating Perfection considers the background behind mechanics as well as the mathematical ideas that play key roles in mechanical applications.


Concentrating on the models of applied mechanics, the book engages the reader in the types of nuts-and-bolts considerations that are normally avoided in formal engineering courses: how and why models remain imperfect, and the factors that motivated their development. The opening chapter reviews and reconsiders the basics of calculus from a fully applied point of view; subsequent chapters explore selected topics from solid mechanics, hydrodynamics, and the natural sciences.


Emphasis is placed on the logic that underlies modeling in mechanics and the many surprising parallels that exist between seemingly diverse areas. The mathematical demands on the reader are kept to a minimum, so the book will appeal to a wide technical audience.


Arvustused

"A well-written general-interest introduction to classical mechanics."--Choice

Preface vii
Chapter 1 The Tools of Calculus
1(66)
1.1 Is Mathematical Proof Necessary?
2(4)
1.2 Abstraction, Understanding, Infinity
6(2)
1.3 Irrational Numbers
8(3)
1.4 What Is a Limit?
11(4)
1.5 Series
15(4)
1.6 Function Continuity
19(2)
1.7 How to Measure Length
21(12)
1.8 Antiderivatives
33(2)
1.9 Definite Integral
35(7)
1.10 The Length of a Curve
42(2)
1.11 Multidimensional Integrals
44(3)
1.12 Approximate Integration
47(5)
1.13 On the Notion of a Function
52(1)
1.14 Differential Equations
53(6)
1.15 Optimization
59(2)
1.16 Petroleum Exploration and Recovery
61(2)
1.17 Complex Variables
63(2)
1.18 Moving On
65(2)
Chapter 2 The Mechanics of Continua
67(84)
2.1 Why Do Ships Float?
67(4)
2.2 The Main Notions of Classical Mechanics
71(3)
2.3 Forces, Vectors, and Objectivity
74(2)
2.4 More on Forces; Statics
76(4)
2.5 Hooke's Law
80(4)
2.6 Bending of a Beam
84(10)
2.7 Stress Tensor
94(6)
2.8 Principal Axes and Invariants of the Stress Tensor
100(2)
2.9 On the Continuum Model and Limit Passages
102(2)
2.10 Equilibrium Equations
104(4)
2.11 The Strain Tensor
108(5)
2.12 Generalized Hooke's Law
113(1)
2.13 Constitutive Laws
114(1)
2.14 Boundary Value Problems
115(3)
2.15 Setup of Boundary Value Problems of Elasticity
118(2)
2.16 Existence and Uniqueness of Solution
120(6)
2.17 Energy; Minimal Principle for a Spring
126(2)
2.18 Energy in Linear Elasticity
128(4)
2.19 Dynamic Problems of Elasticity
132(2)
2.20 Oscillations of a String
134(3)
2.21 Lagrangian and Eulerian Descriptions of Continuum Media
137(3)
2.22 The Equations of Hydrodynamics
140(2)
2.23 D'Alembert--Euler Equation of Continuity
142(2)
2.24 Some Other Models of Hydrodynamics
144(1)
2.25 Equilibrium of an Ideal Incompressible Liquid
145(3)
2.26 Force on an Obstacle
148(3)
Chapter 3 Elements of the Strength of Materials
151(50)
3.1 What Are the Problems of the Strength of Materials?
151(1)
3.2 Hooke's Law Revisited
152(5)
3.3 Objectiveness of Quantities in Mechanics Revisited
157(2)
3.4 Plane Elasticity
159(2)
3.5 Saint-Venant's Principle
161(2)
3.6 Stress Concentration
163(2)
3.7 Linearity vs. Nonlinearity
165(1)
3.8 Dislocations, Plasticity, Creep, and Fatigue
166(6)
3.9 Heat Transfer
172(3)
3.10 Thermoelasticity
175(2)
3.11 Thermal Expansion
177(1)
3.12 A Few Words on the History of Thermodynamics
178(2)
3.13 Thermodynamics of an Ideal Gas
180(2)
3.14 Thermodynamics of a Linearly Elastic Rod
182(4)
3.15 Stability
186(2)
3.16 Static Stability of a Straight Beam
188(5)
3.17 Dynamical Tools for Studying Stability
193(2)
3.18 Additional Remarks on Stability
195(3)
3.19 Leak Prevention
198(3)
Chapter 4 Some Questions of Modeling in the Natural Sciences
201(18)
4.1 Modeling and Simulation
201(2)
4.2 Computerization and Modeling
203(3)
4.3 Numerical Methods and Modeling in Mechanics
206(2)
4.4 Complexity in the Real World
208(1)
4.5 The Role of the Cosine in Everyday Measurements
209(2)
4.6 Accuracy and Precision
211(2)
4.7 How Trees Stand Up against the Wind
213(3)
4.8 Why King Kong Cannot Be as Terrible as in the Movies
216(3)
Afterword 219(2)
Recommended Reading 221(2)
Index 223
Leonid P. Lebedev is Professor of Mathematics at the National University of Colombia and Professor of Mechanics and Mathematics at Rostov State University in Russia. He is the author of Functional Analysis in Mechanics and Functional Analysis: Applications in Mechanics and Inverse Problems. Michael J. Cloud is Professor of Electrical and Computer Engineering at Lawrence Technological University. He is the author of Inequalities with Applications to Engineering and Electromagnetics. Lebedev and Cloud also coauthored Tensor Analysis, and The Calculus of Variations and Functional Analysis with Optimal Control and Applications in Mechanics.