Muutke küpsiste eelistusi

E-raamat: Arc Schemes And Singularities

Edited by (Imperial College London, Uk & Univ Of Leuven, Belgium), Edited by (Univ Of Rennes 1, France), Edited by (Univ Of Rennes 1, France)
  • Formaat: 312 pages
  • Ilmumisaeg: 05-Mar-2020
  • Kirjastus: World Scientific Europe Ltd
  • Keel: eng
  • ISBN-13: 9781786347213
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 87,75 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 312 pages
  • Ilmumisaeg: 05-Mar-2020
  • Kirjastus: World Scientific Europe Ltd
  • Keel: eng
  • ISBN-13: 9781786347213
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This title introduces the theory of arc schemes in algebraic geometry and singularity theory, with special emphasis on recent developments around the Nash problem for surfaces. The main challenges are to understand the global and local structure of arc schemes, and how they relate to the nature of the singularities on the variety. Since the arc scheme is an infinite dimensional object, new tools need to be developed to give a precise meaning to the notion of a singular point of the arc scheme.Other related topics are also explored, including motivic integration and dual intersection complexes of resolutions of singularities. Written by leading international experts, it offers a broad overview of different applications of arc schemes in algebraic geometry, singularity theory and representation theory.
About the Editors v
Chap 1 Introduction
1(6)
David Bourqui
Johannes Nicaise
Julien Sebag
Bibliography
4(3)
Chap 2 Arc Schemes in Geometry and Differential Algebra
7(30)
David Bourqui
Johannes Nicaise
Julien Sebag
1 Weil Restrictions
7(4)
2 Jet Schemes
11(3)
3 Arc Schemes
14(2)
4 Some Brief Reminders on Differential Algebra
16(5)
5 Adjunction Formulas in Differential Algebra
21(7)
6 Algebro-differential Description of Jet/Arc Schemes
28(4)
7 The Universal Algebra of Higher Derivations
32(3)
Bibliography
35(2)
Chap 3 The Grinberg-Kazhdan Formal Arc Theorem and the Newton Groupoids
37(20)
Vladimir Drinfeld
1 Introduction
37(1)
2 The Grinberg-Kazhdan Theorem
38(3)
3 Rephrasing the Proof from Section 2
41(2)
4 Introduction to the Newton Groupoids
43(5)
5 Newton Groupoids (Details)
48(8)
Acknowledgment
56(1)
Bibliography
56(1)
Chap 4 Non-complete Completions
57(12)
Mercedes Haiech
1 Introduction
57(2)
2 A Necessary and Sufficient Condition to be Adically Complete
59(4)
3 A Not I-adically Complete Completion
63(4)
Acknowledgments
67(1)
Bibliography
68(1)
Chap 5 The Local Structure of Arc Schemes
69(30)
David Bourqui
Julien Sebag
1 Introduction
69(1)
2 Conventions and Notations
70(2)
3 The Drinfeld-Grinberg-Kazhdan Theorem
72(12)
4 A Simplification Lemma in Formal Geometry
84(1)
5 The Minimal Formal Model of a Rational Non-degenerate Arc
85(2)
6 The Case of Degenerate Arcs
87(2)
7 Dependency on the Arc
89(4)
8 Nilpotency in Formal Neighborhoods
93(3)
Bibliography
96(3)
Chap 6 Arc Schemes of AfRne Algebraic Plane Curves and Torsion Kahler Differential Forms
99(14)
David Bourqui
Julien Sebag
1 Introduction
99(2)
2 Conventions and Notations
101(1)
3 Proof of Theorem 1.1
102(3)
4 Singular Locus of Torsion Kahler Differential Forms
105(1)
5 A Structure Statement on Derivation Module of Plane Curves
106(2)
6 A Consequence on the Schematic Structure of Arc Schemes Associated with Plane Curves
108(1)
7 A SAGE Code to Compute Nilpotent Kahler Differential Forms of Plane Curves
109(1)
Bibliography
110(3)
Chap 7 Models of Affine Curves and G0-actions
113(8)
Kevin Langlois
1 Introduction
113(1)
2 Basics
114(2)
3 Proof of the Main Result
116(3)
Acknowledgments
119(1)
Bibliography
119(2)
Chap 8 Theoremes de Structure sur les Espaces d'Arcs
121(24)
Alexis Bouthier
1 Introduction
121(1)
2 Preliminaries
122(2)
3 Espace D'arcs
124(7)
4 Morphismes Pro-lisses
131(3)
5 Sur Certains Espaces Non-noetheriens
134(4)
6 Enonces Principaux
138(2)
7 Vers une Theorie des Faisceaux
140(3)
Bibliographie
143(2)
Chap 9 Partition Identities and Application to Infinite-Dimensional Grobner Basis and Vice Versa
145(18)
Pooneh Afsharijoo
Hussein Mourtada
1 Introduction
145(1)
2 Hilbert Series and Integer Partitions
146(6)
3 The Lex Grobner Basis of [ Χ12]
152(4)
4 Two Color Partitions and the Node
156(4)
Acknowledgments
160(1)
Bibliography
160(3)
Chap 10 The Algebraic Answer to the Nash Problem for Normal Surfaces According to de Fernex and Docampo
163(10)
Monique Lejeune-Jalabert
1 Introduction
163(1)
2 Arcs, the Nash Map and the Nash Problem
164(1)
3 Arcs and Wedges
165(1)
4 Lifting Wedges
166(6)
Bibliography
172(1)
Chap 11 The Nash Problem from Geometric and Topological Perspective
173(24)
J. Fernandez De Bobadilla
M. Pe Pereira
1 Introduction
173(2)
2 The Idea of the Proof for Surfaces
175(2)
3 Turning the Problem into a Problem of Convergent Wedges
177(1)
4 Reduction to an Euler Characteristic Estimate
178(3)
5 The Euler Characteristic Estimates
181(5)
6 The Returns of a Wedge and Deformation Theoretic Ideas
186(1)
7 The Proof by de Fernex and Docampo for the Higher Dimensional Case
187(4)
8 The Generalized Nash Problem and the Classical Adjacency Problem
191(1)
9 Holomorphic Arcs
192(2)
Acknowledgments
194(1)
Bibliography
194(3)
Chap 12 Motivic and Analytic Nearby Fibers at Infinity and Bifurcation Sets
197(24)
Lorenzo Fantini
Michel Raibaut
1 Introduction
197(4)
2 Motivic Integration and Nearby Cycles
201(4)
3 Motivic Nearby Cycles at Infinity and the Motivic Bifurcation Set
205(5)
4 Analytic Nearby Fiber at Infinity and the Serre Bifurcation Set
210(8)
Acknowledgments
218(1)
Bibliography
218(3)
Chap 13 The Neron Multiplicity Sequence of Singularities
221(10)
Beatriz Pascual-Escudero
Julien Sebag
1 Introduction
221(1)
2 The Neron Multiplicity Sequence of Singularities
222(3)
3 Nash and Neron Multiplicity Sequences
225(2)
4 Cuspidal Plane Curve Singularities
227(2)
Acknowledgments
229(1)
Bibliography
229(2)
Chap 14 The Dual Complex of Singularities After de Fernex, Kollar and Xu
231(26)
Mirko Mauri
1 Introduction
231(6)
2 Notation: Birational Dictionary
237(1)
3 Notation: Simplicial Complexes
238(1)
4 Dual Complex of a Log Smooth Pair
239(2)
5 Dual Complex of a Resolution of Singularities and of a dlt Pair
241(3)
6 Proof of Proposition 5.2 and Main Theorem (1)
244(4)
7 Running MMP
248(2)
8 Proof of Main Theorem (2)
250(2)
9 Proof of Main Theorem (3)
252(1)
Acknowledgments
253(1)
Bibliography
253(4)
Chap 15 Log-Regular Models for Products of Degenerations
257(22)
Morgan V. Brown
Enrica Mazzon
1 Introduction
257(3)
2 The Skeleton of a Log-Regular Model
260(9)
3 The Essential Skeleton of a Product
269(4)
4 Applications
273(4)
Acknowledgments
277(1)
Bibliography
277(2)
Chap 16 Arc Scheme and Bernstein Operators
279(18)
Michel Gros
Luis Narvdez Macarro
Julien Sebag
1 Introduction
279(1)
2 Recollection on Arc Scheme
280(1)
3 Recollection of Differential Algebra
281(2)
4 Nilpotent Functions on Arc Scheme and Differential Operators
283(5)
5 Bernstein Operators
288(1)
6 Examples and Further Comments
289(6)
Acknowledgment
295(1)
Bibliography
295(2)
Index 297