Muutke küpsiste eelistusi

E-raamat: Architecture of Computing Systems: 36th International Conference, ARCS 2023, Athens, Greece, June 13-15, 2023, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

T his book constitutes the proceedings of the 36th International Conference on Architecture of Computing Systems, ARCS 2023, which took place in Athens, Greece, in June 2023.

The 18 full papers in this volume were carefully reviewed and selected from 35 submissions.

ARCS provides a platform covering newly emerging and cross-cutting topics, such as autonomous and ubiquitous systems, reconfigurable computing and acceleration, neural networks and artificial intelligence. The selected papers cover a variety of topics from the ARCS core domains, including energy efficiency, applied machine learning, hardware and software system security, reliable and fault-tolerant systems and organic computing.

Back to top
Accelerating Neural Networks.- Energy Efficient LSTM Accelerators for
Embedded FPGAs through Parameterised Architecture Design.- A
Comparative Study of Neural Network Compilers on ARMv8 Architecture.- Organic
Computing Methodology (OC).- A Decision-Theoretic Approach for Prioritzing
Maintenance Activities in Organic Computing Systems.- Predicting Physical
Disturbances in Organic Computing Systems using Automated Machine
Learning.- Self-Adaptive Diagnosis and Reconfigurationin ADNA-Based
Organic Computing.- Dependability and Fault Tolerance (VERFE) Error Codes in
and for Network Steganography.- Modified Cross Parity Codes For Adjacent
Double Error Correction.- Computer Architecture Co-Design.- COMPESCE: A
Co-design Approach for memory subsystem Performance Analysis in HPC
many-cores.- Post-Silicon Customization Using Deep Neural Networks.- Computer
Architectures and Operating Systems.- TOSTING: Investigating Total Store
Ordering on ARM.- Back to the Core-Memory Age: Running Operating Systems
in NVRAM only.- Retrofitting AMD x86 processors with active virtual
machine introspection capabilities.- Organic Computing Applications 1
(OC).- Abstract Artificial DNAs Improved Time Bounds.- Evaluating the
Comprehensive Adaptive Chameleon Middleware for Mixed-Critical Cyber-Physical
Networks.- CoLeCTs: Cooperative Learning Classifier Tables for
Resource Management in MPSoCs.- Hardware Acceleration.- Improved Condition
Handling in CGRAs with Complex Loop Support.- FPGA-based Network-attached
Accelerators An Environmental Life Cycle Perspective.- Optimization of OLAP
In-memory DB Management Systems with PIM.- Organic Computing Applications 2
(OC).- Real-Time Data Transmission Optimization on 5G Remote-Controlled Units
using Deep Reinforcement Learning.- Autonomous ship collision avoidance
trained on observational data.- Towards Dependable Unmanned Aerial Vehicle
Swarms Using Organic Computing.