Muutke küpsiste eelistusi

E-raamat: Art of Finding Hidden Risks: Hidden Regular Variation in the 21st Century

Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This text gives a comprehensive, largely self-contained treatment of multivariate heavy tail analysis. Emphasizing regular variation of measures means theory can be presented systematically and without regard to dimension. Tools are developed that allow a flexible definition of "extreme" in higher dimensions and permit different heavy tails to coexist on the same state space leading to "hidden regular variation" and "steroidal regular variation". This emphasizes when estimating risks, it is important to choose the appropriate heavy tail. Theoretical foundations lead naturally to statistical techniques; examples are drawn from risk estimation, finance, climatology and network analysis. Treatments target a broad audience in insurance, finance, data analysis, network science and probability modeling. The prerequisites are modest knowledge of analysis and familiarity with the definition of a measure; regular variation of functions is reviewed but is not a focal point.



1 Foundation.- 2 Regular Variation.- 3 Hidden Regular Variation.- 4 Lévy
Processes with Regularly Varying Distributions: Where Do the Jumps Go?.- 5
Statistics.- A A Crash Course on Regularly Varying Functions.- B Notation
Summary.- References.- Index.
Sidney Resnick is the Lee Teng-Hui Professor in Engineering Emeritus in Cornell University's School of Operations Research and Information Engineering in Ithaca NY. He joined Cornell after posts at Technion, Stanford and Colorado State University. He has served on numerous editorial boards, had numerous visiting appointments and, to date, has published 4 previous books and co-authored 195 research papers. From 1998--2003, Resnick was Director of the School of ORIE.