Muutke küpsiste eelistusi

E-raamat: Artificial Intelligence Applications and Innovations: 20th IFIP WG 12.5 International Conference, AIAI 2024, Corfu, Greece, June 27-30, 2024, Proceedings, Part I

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 221,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of the 20th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations, AIAI 2024, held in Corfu, Greece, during June 2730, 2024.





The 100 full papers and 8 short papers included in this book were carefully reviewed and selected from 213 submissions. The diverse nature of papers presented demonstrates the vitality of AI algorithms and approaches. It certainly proves the very wide range of AI applications as well.
.- A Novel Signature for Distinguishing Non-Lesional from Lesional Skin
of Atopic Dermatitis Based on a Machine Learning Approach.

.- Advanced Mortality Prediction in Adult ICU: Introducing a Deep Learning
Approach in Healthcare.

.- Advancing scRNA-seq Data Integration via a Novel Gene Selection Method.

.- Data Augmentation Techniques for Cross-Domain WiFi CSI-based Human
Activity Recognition.

.- Enhancing Monkeypox Detection: A Machine Learning Approach to Symptom
Analysis and Disease Prediction.

.- Evaluation of Language Models for Multilabel Classification of Biomedical
Texts.

.- Higher-Order Adaptive Dynamical System Modelling of the Role of
Epigenetics in Major Depressive Disorder.

.- Human-In-The-Loop based Success Rate Prediction for Medical Crowdfunding.

.- Hybrid Explanatory Interactive Machine Learning for Medical Diagnosis.

.- Image-Based Human Action Recognition with Transfer Learning using Grad-CAM
for Visualization.

.- IRFold: An RNA Secondary Structure Prediction Approach.

.- Machine Learning Models for Predicting Celiac Disease  Based on
Non-invasive Clinical Symptoms.

.- Modeling Distributed and Flexible PHM System based on the Belief Function
Theory.

.- MTA-Net: a Multi-task Assisted Network for Whole-body Lymphoma
Segmentation.

.- Optimization of healthcare process management using machine learning.

.- Revisiting the problem of missing values in high-dimensional data and
feature selection effect.

.- Semantic Modelling for Representation and Integration of Health Data from
Wearable Devices.

.- The Role of Epigenetics in OCD: a Multi-Order Adaptive Network Model for
DNA-Methylation Pathways and the Development of OCD.

.- Towards an Unbiased Classification of Chest X-ray Images using a RL
Powered ACGAN Framework.

.- Vision transformer based tokenization for enhanced breast cancer
histopathological images classification.

.- WristSense: A Wrist-wear Dataset for Identifying Aggressive Tendencies.

.- A Network-based Intrusion Detection System based on widely used
Cybersecurity Datasets and State of the Art ML techniques.

.- Effective Machine Learning Techniques and API Realizations for Visualizing
Fraud Detection in Customer Transactions.

.- Enhancing Malware Detection through Machine Learning using XAI with SHAP
Framework.

.- Exploration of Ensemble Methods for Cyber Attack Detection in
Cyber-Physical Systems.

.- Local Community-Based Anomaly Detection in Graph Streams.

.- Synthetic Data Generation and Impact Analysis of Machine Learning Models
for Enhanced Credit Card Fraud Detection.