Muutke küpsiste eelistusi

E-raamat: Artificial Neural Network-based Designs of Prestressed Concrete and Composite Structures

(Kyung Hee University, Republic of Korea)
  • Formaat: 552 pages
  • Ilmumisaeg: 25-Sep-2023
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000913934
  • Formaat - EPUB+DRM
  • Hind: 221,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 552 pages
  • Ilmumisaeg: 25-Sep-2023
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000913934

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book introduces artificial neural network (ANN)-based Lagrange optimization techniques for a structural design of prestressed concrete structures based on Eurocode 2, and composite structures based on American Institute of Steel Construction and American Concrete Institute standards. The book provides robust design charts for prestressed concrete structures, which are challenging to achieve using conventional design methods.

Using ANN-based design charts, the holistic design of a post-tensioned beam is performed to optimize design targets (objective functions), while calculating 21 forward outputs, in arbitrary sequences, from 21 forward inputs.

  • Applies the powerful tools of ANN to the optimization of prestressed concrete structures and composite structures including columns and beams
  • Multi-objective optimizations (MOO) of prestressed concrete beams are performed using an ANN-based Lagrange algorithm
  • Offers a Pareto frontier using an ANN-based MOO for composite beams and composite columns sustaining multi-biaxial loads
  • Heavily illustrated in color and with diverse practical design examples in line with EC2, ACI, and ASTM codes

The book offers optimal solutions for structural designers and researchers, enabling readers to construct design charts to minimize their own design targets under various design requirements based on any design code.



This introduces artificial neural network-based Lagrange optimization techniques for structural design in prestressed concrete based on Eurocode 2 and composite structures based on American Institute of Steel Construction and American Concrete Institute standards. ANN-based design charts show how to use the Lagrange multiplier method.
1. Basic principles of prestressed structures based on Eurocode 2. 
2.
Holistic design of pre-tensioned concrete beams based on artificial neural
networks. 
3. An optimized design of pre-tensioned concrete beams using an
ANN-based Lagrange algorithm. 
4. Multi-objective optimizations (MOO) of
pre-tensioned concrete beams using an ANN-based Lagrange algorithm. 
5.
Reverse design charts for steel-reinforced concrete beams based on artificial
neural networks. 
6. An optimization of steel-reinforced concrete beams using
an ANN-based Lagrange algorithm. 
7. Multi-objective optimization (MOO) for
Steel-Reinforced Concrete Beam developed based on ANN-based Lagrange
Algorithm. 
8. An ANN-based reverse design of reinforced concrete columns
encasing H-shaped steel section. 
9. Design optimizations of concrete columns
encasing H-shaped steel sections under a biaxial bending using an ANN-based
Lagrange algorithm. 
10. A Pareto frontier using an ANN-based multi-objective
optimization (MOO) for concrete columns encasing H-shaped steel sustaining
multi-biaxial loads. 
WonKee Hong is a Professor of Architectural Engineering at Kyung Hee University, South Korea. He has more than 35 years of professional experience in structural and construction engineering, having worked for Englekirk and Hart, USA; Nihhon Sekkei, Japan; and Samsung Engineering and Construction, Korea. He is the author of Artificial Neural Network-based Optimized Design of Reinforced Concrete Structures, also published by CRC Press.