Muutke küpsiste eelistusi

E-raamat: Assembly Automation and Product Design

(Boothroyd Dewhurst Inc., Wakefield, Rhode Island, USA)
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 240,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Addressing design for automated and manual assembly processes, Assembly Automation and Product Design, Second Edition examines assembly automation in parallel with product design. The author enumerates the components, processes, performance, and comparative economics of several types of automatic assembly systems. He provides information on equipment such as transfer devices, parts feeders, feed tracks, placing mechanisms, and robots.

Presenting detailed discussions of product design for assembly, the book contains over 500 drawings, tables, and equations, and numerous problems and laboratory experiments that help clarify and reinforce essential concepts. Highlighting the importance of well-designed products, the book covers design for manual assembly, high-speed automatic and robot assembly, and electronics assembly. The new edition includes the popular Handbook of Feeding and Orienting Techniques for Small Parts, published at the University of Massachusetts, as an appendix. This provides more than 100 pages packed with useful data and information that will help you avoid the costly errors that often plague high-volume manufacturing companies.

In today's extremely competitive, highly unpredictable world, your organization needs to constantly find new ways to deliver value. Performing the same old processes in the same old ways is no longer a viable option. Taking an analytical yet practical approach to assembly automation, this completely revised second edition gives you the skill set you need not only to deliver that value, but to deliver it economically and on time.
Chapter 1 Introduction 1(16)
1.1 Historical Development of the Assembly Process
2(4)
1.2 Choice of Assembly Method
6(4)
1.3 Social Effects of Automation
10(5)
References
15(2)
Chapter 2 Automatic Assembly Transfer Systems 17(12)
2.1 Continuous Transfer
17(1)
2.2 Intermittent Transfer
17(6)
2.3 Indexing Mechanisms
23(4)
2.4 Operator-Paced Free-Transfer Machine
27(1)
References
28(1)
Chapter 3 Automatic Feeding and Orienting - Vibratory Feeders 29(62)
3.1 Mechanics of Vibratory Conveying
29(5)
3.2 Effect of Frequency
34(1)
3.3 Effect of Track Acceleration
34(1)
3.4 Effect of Vibration Angle
35(1)
3.5 Effect of Track Angle
35(2)
3.6 Effect of Coefficient of Friction
37(1)
3.7 Estimating the Mean Conveying Velocity
38(4)
3.8 Load Sensitivity
42(2)
3.9 Solutions to Load Sensitivity
44(2)
3.10 Spiral Elevators
46(1)
3.11 Balanced Feeders
47(1)
3.12 Orientation of Parts
47(1)
3.13 Typical Orienting System
48(6)
3.14 Effect of Active Orienting Devices on Feed Rate
54(1)
3.15 Analysis of Orienting Systems
55(8)
3.15.1 Orienting System
57(1)
3.15.2 Method of System Analysis
58(3)
3.15.3 Optimization
61(2)
3.16 Performance of an Orienting Device
63(6)
3.16.1 Analysis
63(6)
3.17 Natural Resting Aspects of Parts for Automatic Handling
69(9)
3.17.1 Assumptions
70(1)
3.17.2 Analysis for Soft Surfaces
71(6)
3.17.3 Analysis for Hard Surfaces
77(1)
3.17.4 Analysis for Cylinders and Prisms with Displaced Centers of Mass
78(1)
3.17.5 Summary of Results
78(1)
3.18 Analysis of a Typical Orienting System
78(9)
3.18.1 Design of Orienting Devices
85(2)
3.19 Out-of-Bowl Tooling
87(2)
References
89(2)
Chapter 4 Automatic Feeding and Orienting - Mechanical Feeders 91(40)
4.1 Reciprocating-Tube Hopper Feeder
92(2)
4.1.1 General Features
94(1)
4.1.2 Specific Applications
94(1)
4.2 Centerboard Hopper Feeder
94(6)
4.2.1 Maximum Track Inclination
94(5)
4.2.2 Load Sensitivity and Efficiency
99(1)
4.3 Reciprocating-Fork Hopper Feeder
100(2)
4.4 External Gate Hopper Feeder
102(6)
4.4.1 Feed Rate
102(4)
4.4.2 Load Sensitivity and Efficiency
106(2)
4.5 Rotary-Disk Feeder
108(2)
4.5.1 Indexing Rotary-Disk Feeder
108(1)
4.5.2 Rotary-Disk Feeder with Continuous Drive
109(1)
4.5.3 Load Sensitivity and Efficiency
110(1)
4.6 Centrifugal Hopper Feeder
110(5)
4.6.1 Feed Rate
111(3)
4.6.2 Efficiency
114(1)
4.7 Stationary-Hook Hopper Feeder
115(4)
4.7.1 Design of the Hook
115(3)
4.7.2 Feed Rate
118(1)
4.8 Bladed-Wheel Hopper Feeder
119(1)
4.9 Tumbling-Barrel Hopper Feeder
119(5)
4.9.1 Feed Rate
121(3)
4.10 Rotary-Centerboard Hopper Feeder
124(1)
4.11 Magnetic-Disk Feeder
124(1)
4.12 Elevating Hopper Feeder
125(1)
4.13 Magnetic Elevating Hopper Feeder
126(1)
4.14 Magazines
126(4)
References
130(1)
Chapter 5 Feed Tracks, Escapements, Parts-Placement Mechanisms, and Robots 131(56)
5.1 Gravity Feed Tracks
131(27)
5.1.1 Analysis of Horizontal-Delivery Feed Track
132(5)
5.1.2 Example
137(2)
5.1.3 On/Off Sensors
139(4)
5.1.3.1 Theory
140(3)
5.1.4 Feed Track Section
143(3)
5.1.5 Design of Gravity Feed Tracks for Headed Parts
146(12)
5.1.5.1 Analysis
146(7)
5.1.5.2 Results
153(5)
5.1.5.3 Procedure for Use of Figure 5.17 to Figure 5.20
158(1)
5.2 Powered Feed Tracks
158(3)
5.2.1 Example
160(1)
5.3 Escapements
161(7)
5.3.1 Ratchet Escapements
162(2)
5.3.2 Slide Escapements
164(1)
5.3.3 Drum Escapements
165(2)
5.3.4 Gate Escapements
167(1)
5.3.5 Jaw Escapements
167(1)
5.4 Parts-Placing Mechanisms
168(3)
5.5 Assembly Robots
171(15)
5.5.1 Terminology
171(1)
5.5.2 Advantages of Robot Assembly
172(2)
5.5.3 Magazines
174(1)
5.5.4 Types of Magazine Systems
175(1)
5.5.5 Automatic Feeders for Robot Assembly
175(3)
5.5.6 Economics of Part Presentation
178(4)
5.5.7 Design of Robot Assembly Systems
182(4)
References
186(1)
Chapter 6 Performance and Economics of Assembly Systems 187(32)
6.1 Indexing Machines
187(8)
6.1.1 Effect of Parts Quality on Downtime
187(1)
6.1.2 Effects of Parts Quality on Production Time
188(2)
6.1.3 Effect of Parts Quality on the Cost of Assembly
190(5)
6.2 Free-Transfer Machines
195(6)
6.2.1 Performance of a Free-Transfer Machine
196(4)
6.2.2 Average Production Time for a Free-Transfer Machine
200(1)
6.2.3 Number of Personnel Needed for Fault Correction
200(1)
6.3 Basis for Economic Comparisons of Automation Equipment
201(3)
6.3.1 Basic Cost Equations
202(2)
6.4 Comparison of Indexing and Free-Transfer Machines
204(3)
6.4.1 Indexing Machine
204(1)
6.4.2 Free-Transfer Machine
205(1)
6.4.3 Effect of Production Volume
205(2)
6.5 Economics of Robot Assembly
207(10)
6.5.1 Parts Presentation
208(3)
6.5.2 Profile of Typical Candidate Assembly
211(1)
6.5.3 Single-Station Systems
212(3)
6.5.3.1 Equipment Costs
212(1)
6.5.3.2 Personnel Costs
213(1)
6.5.3.3 Parts Quality
213(1)
6.5.3.4 Basic Cost Equation
214(1)
6.5.4 Multistation Transfer Systems
215(6)
6.5.4.1 Equipment Costs
215(1)
6.5.4.2 Cost Equation
216(1)
References
217(2)
Chapter 7 Design for Manual Assembly 219(38)
7.1 Introduction
219(1)
7.2 Where Design for Assembly Fits in the Design Process
219(2)
7.3 General Design Guidelines for Manual Assembly
221(6)
7.3.1 Design Guidelines for Part Handling
221(1)
7.3.2 Design Guidelines for Insertion and Fastening
222(5)
7.4 Development of a Systematic DFA Analysis Method
227(2)
7.5 DFA Index
229(1)
7.6 Classification System for Manual Handling
230(3)
7.7 Classification System for Manual Insertion and Fastening
233(3)
7.8 Effect of Part Symmetry on Handling Time
236(1)
7.9 Effect of Part Thickness and Size on Handling Time
237(2)
7.10 Effect of Weight on Handling Time
239(1)
7.11 Parts Requiring Two Hands for Manipulation
240(1)
7.12 Effects of Combinations of Factors
240(1)
7.13 Threaded Fasteners
240(2)
7.14 Effects of Holding Down
242(1)
7.15 Problems with Manual Assembly Time Standards
242(2)
7.16 Application of the DFA Method
244(7)
7.16.1 Results of the Analysis
248(3)
7.17 Further General Design Guidelines
251(3)
References
254(3)
Chapter 8 Product Design for High-Speed Automatic Assembly and Robot Assembly 257(34)
8.1 Introduction
257(1)
8.2 Design of Parts for High-Speed Feeding and Orienting
258(5)
8.3 Example
263(2)
8.4 Additional Feeding Difficulties
265(1)
8.5 High-Speed Automatic Insertion
266(3)
8.6 Example
269(2)
8.7 Analysis of an Assembly
271(1)
8.8 General Rules for Product Design for Automation
272(4)
8.9 Design of Parts for Feeding and Orienting
276(4)
8.10 Summary of Design Rules for High-Speed Automatic Assembly
280(1)
8.10.1 Rules for Product Design
280(1)
8.10.2 Rules for the Design of Parts
280(1)
8.11 Product Design for Robot Assembly
281(8)
8.11.1 Summary of Design Rules for Robot Assembly
287(2)
References
289(2)
Chapter 9 Printed-Circuit-Board Assembly 291(20)
9.1 Introduction
291(1)
9.2 Terminology
291(1)
9.3 Assembly Process for PCBs
292(9)
9.4 SMD Technology
301(1)
9.5 Estimation of PCB Assembly Costs
302(1)
9.6 Worksheet and Database for PCB Assembly Cost Analysis
303(2)
9.6.1 Instructions
303(2)
9.7 PCB Assembly - Equations and Data for Total Operation Cost
305(3)
9.7.1 Manual
306(1)
9.7.2 Autoinsertion Machine
306(1)
9.7.3 Robot Insertion Machine
306(2)
9.8 Glossary of Terms
308(2)
References
310(1)
Chapter 10 Feasibility Study for Assembly Automation 311(52)
10.1 Machine Design Factors to Reduce Machine Downtime Due to Defective Parts
312(1)
10.2 Feasibility Study
313(19)
10.2.1 Precedence Diagrams
314(3)
10.2.2 Manual Assembly of Plug
317(1)
10.2.3 Quality Levels of Parts
318(1)
10.2.4 Parts Feeding and Assembly
319(2)
10.2.5 Special-Purpose Machine Layout and Performance
321(5)
10.2.5.1 Indexing Machine
321(3)
10.2.5.2 Free-Transfer Machine
324(2)
10.2.6 Robot Assembly of the Power Plug
326(6)
References
332(1)
Problems
333(30)
Appendix A Simple Method for the Determination of the Coefficient of Dynamic Friction 363(6)
A.1 The Method
363(2)
A.2 Analysis
365(1)
A.3 Precision of the Method
366(1)
A.4 Discussion
366(2)
Reference
368(1)
Appendix B Out-of-Phase Vibratory Conveyors 369(6)
B.1 Out-of-Phase Conveying
370(2)
B.2 Practical Applications
372(1)
Reference
373(2)
Appendix C Laboratory Experiments 375(10)
C.1 Performance of a Vibratory-Bowl Feeder
375(4)
C.1.1 Objectives
375(1)
C.1.2 Equipment
375(1)
C.1.3 Procedure
375(1)
C.1.4 Theory
376(2)
C.1.5 Presentation of Results
378(1)
C.2 Performance of a Horizontal-Delivery Gravity Feed Track
379(6)
C.2.1 Objectives
379(1)
C.2.2 Equipment (Objective 1)
379(1)
C.2.3 Theory (Objective 1)
380(1)
C.2.4 Procedure (Objective 1)
381(1)
C.2.5 Results (Objective 1)
381(1)
C.2.6 Equipment (Objective 2)
381(1)
C.2.7 Theory (Objective 2)
382(1)
C.2.8 Procedure (Objective 2)
382(1)
C.2.9 Results (Objective 2)
383(1)
C.2.10 Conclusions
383(2)
Appendix D Feeding and Orienting Techniques for Small Parts 385(116)
D.1 Coding System
385(23)
D.1.1 Introduction to the Coding System
386(4)
D.1.2 Coding Examples
390(2)
D.1.3 Sample Parts for Practice
392(1)
D.1.4 Analysis of the Coding of the Sample Parts
393(2)
D.1.5 Coding System for Small Parts
395(13)
D.2 Feeding and Orienting Techniques
408(66)
D.3 Orienting Devices for Vibratory-Bowl Feeders
474(18)
D.4 Nonvibratory Feeders
492(9)
Nomenclature 501(6)
Index 507


Geoffrey Boothroyd