Muutke küpsiste eelistusi

E-raamat: Asymptotics of Random Matrices and Related Models

  • Formaat - PDF+DRM
  • Hind: 72,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Probability theory is based on the notion of independence. The celebrated law of large numbers and the central limit theorem describe the asymptotics of the sum of independent variables. However, there are many models of strongly correlated random variables: for instance, the eigenvalues of random matrices or the tiles in random tilings. Classical tools of probability theory are useless to study such models.

These lecture notes describe a general strategy to study the fluctuations of strongly interacting random variables. This strategy is based on the asymptotic analysis of Dyson-Schwinger (or loop) equations: the author will show how these equations are derived, how to obtain the concentration of measure estimates required to study these equations asymptotically, and how to deduce from this analysis the global fluctuations of the model. The author will apply this strategy in different settings: eigenvalues of random matrices, matrix models with one or several cuts, random tilings, and several matrices models.
Preface vii
Chapter 1 Introduction
1(8)
Chapter 2 The example of the GUE
9(10)
Chapter 3 Wigner random matrices
19(16)
3.1 Law of large numbers: Light tails
19(7)
3.2 Law of large numbers: Heavy tails
26(4)
3.3 CLT
30(5)
Chapter 4 Beta-ensembles
35(28)
4.1 Law of large numbers and large deviation principles
35(7)
4.2 Concentration of measure
42(4)
4.3 The Dyson-Schwinger equations
46(8)
4.4 Expansion of the partition function
54(3)
4.5 The Stieltjes transforms approach
57(6)
Chapter 5 Discrete beta-ensembles
63(16)
5.1 Large deviations, law of large numbers
64(2)
5.2 Concentration of measure
66(2)
5.3 Nekrasov's equations
68(7)
5.4 Second order expansion of linear statistics
75(1)
5.5 Expansion of the partition function
76(3)
Chapter 6 Continuous beta-models: The several cut case
79(12)
6.1 The fixed filling fractions model
80(8)
6.2 Central limit theorem for the full model
88(3)
Chapter 7 Several matrix-ensembles
91(26)
7.1 Non-commutative derivatives
92(1)
7.2 Non-commutative Dyson-Schwinger equations
93(1)
7.3 Independent GUE matrices
93(2)
7.4 Several interacting matrices models
95(11)
7.5 Second order expansion for the free energy
106(11)
Chapter 8 Universality for beta-models
117(20)
Bibliography 137(6)
Index 143
Alice Guionnet, Universite de Lyon, CNRS, ENS de Lyon, France.