Muutke küpsiste eelistusi

E-raamat: Atomic-Scale Modelling of Electrochemical Systems

Edited by , Edited by , Edited by
  • Formaat: PDF+DRM
  • Ilmumisaeg: 25-Aug-2021
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119605621
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 180,25 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 25-Aug-2021
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119605621
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A comprehensive overview of atomistic computational electrochemistry, discussing methods, implementation, and state-of-the-art applications in the field 

The first book to review state-of-the-art computational and theoretical methods for modelling, understanding, and predicting the properties of electrochemical interfaces. This book presents a detailed description of the current methods, their background, limitations, and use for addressing the electrochemical interface and reactions. It also highlights several applications in electrocatalysis and electrochemistry. 

Atomic-Scale Modelling of Electrochemical Systems discusses different ways of including the electrode potential in the computational setup and fixed potential calculations within the framework of grand canonical density functional theory. It examines classical and quantum mechanical models for the solid-liquid interface and formation of an electrochemical double-layer using molecular dynamics and/or continuum descriptions. A thermodynamic description of the interface and reactions taking place at the interface as a function of the electrode potential is provided, as are novel ways to describe rates of heterogeneous electron transfer, proton-coupled electron transfer, and other electrocatalytic reactions. The book also covers multiscale modelling, where atomic level information is used for predicting experimental observables to enable direct comparison with experiments, to rationalize experimental results, and to predict the following electrochemical performance. 

  • Uniquely explains how to understand, predict, and optimize the properties and reactivity of electrochemical interfaces starting from the atomic scale 
  • Uses an engaging "tutorial style" presentation, highlighting a solid physicochemical background, computational implementation, and applications for different methods, including merits and limitations 
  • Bridges the gap between experimental electrochemistry and computational atomistic modelling 

Written by a team of experts within the field of computational electrochemistry and the wider computational condensed matter community, this book serves as an introduction to the subject for readers  entering the field of atom-level electrochemical modeling, while also serving as an invaluable reference for advanced practitioners already working in the field.  

List of Contributors
xi
Part I
1(24)
1 Introduction to Atomic Scale Electrochemistry
3(22)
Marko M. Melander
Tomi T. Laurila
Kari Laasonen
1.1 Background
3(1)
1.2 The thermodynamics of electrified interface
4(8)
1.2.1 Electrode
6(1)
1.2.2 Electrical double layer
7(1)
1.2.3 Solvation sheets
8(1)
1.2.4 Electrode potential
8(4)
1.3 Chemical interactions between the electrode and redox species
12(1)
1.4 Reaction kinetics at electrochemical interfaces
13(5)
1.4.1 Outer and inner sphere reactions
13(3)
1.4.2 Computational aspects
16(1)
1.4.3 Challenges
17(1)
1.5 Charge transport
18(1)
1.6 Mass transport to the electrode
18(2)
1.7 Summary J9 References
20(5)
Part II
25(68)
2 Retrospective and Prospective Views of Electrochemical Electron Transfer Processes: Theory and Computations
27(66)
Renat R. Nazmutdinov
Jens Ulstrup
2.1 Introduction - interfacial molecular electrochemistry in recent retrospective
27(1)
2.1.1 An electrochemical renaissance
27(1)
2.1.2 A bioelectrochemical renaissance
27(1)
2.2 Analytical theory of molecular electrochemical ET processes
28(17)
2.2.1 A Reference to molecular ET processes in homogeneous solution
28(2)
2.2.2 Brief discussion of contemporary computational approaches
30(1)
2.2.3 Molecular electrochemical ET processes and general chemical rate theory
31(4)
2.2.4 Some electrochemical ET systems at metal electrodes
35(1)
2.2.4.1 Some outer sphere electrochemical ET processes
35(3)
2.2.4.2 Dissociative ET: the electrochemical peroxodisulfate reduction
38(1)
2.2.5 d-band, cation, and spin catalysis
39(1)
2.2.6 New solvent environments in simple electrochemical ET processes - ionic liquids
40(1)
2.2.7 Proton transfer, proton conductivity, and proton coupled electron transfer (PCET)
40(4)
2.2.7.1 Some further notes on the nature of PT/PCET processes
44(1)
2.2.7.2 The electrochemical hydrogen evolution reaction, and the Tafel plot on mercury
44(1)
2.3 Ballistic and stochastic (Kramers-Zusman) chemical rate theory
45(5)
2.4 Early and recent views on chemical and electrochemical long-range ET
50(3)
2.5 Molecular-scale electrochemical science
53(14)
2.5.1 Electrochemical in situ STM and AFM
53(1)
2.5.2 Nanoscale mapping of novel electrochemical surfaces
54(1)
2.5.2.1 Self-assembled molecular monolayers (SAMs) of functionalized thiol [ 192-194]
54(2)
2.5.3 Electrochemical single-molecule ET and conductivity of complex molecules
56(2)
2.5.4 Selected cases of in situ STM and STS of organic and inorganic redox molecules
58(1)
2.5.4.1 Theviologens
58(1)
2.5.4.2 Transition metal complexes as single-molecule in operando STM targets
59(2)
2.5.5 Other single-entity nanoscale electrochemistry
61(1)
2.5.5.1 Electrochemistry in low-dimensional carbon confinement
61(1)
2.5.5.2 Electrochemistry of nano- and molecular-scale metallic nanoparticles
62(1)
2.5.6 Elements of nanoscale and single-molecule bioelectrochemistry
63(1)
2.5.6.1 A single-molecule electrochemical metalloprotein target - P. aeruginosa azurin
63(2)
2.5.6.2 Electrochemical SPMs of metalloenzymes, and some other "puzzles"
65(2)
2.6 Computational approaches to electrochemical surfaces and processes revisited
67(2)
2.6.1 Theoretical methodologies and microscopic structure of electrochemical interfaces
67(1)
2.6.2 The electrochemical process revisited
68(1)
2.7 Quantum and computational electrochemistry in retrospect and prospect
69(4)
2.7.1 Prospective conceptual challenges in quantum and computational electrochemistry
70(1)
2.7.2 Prospective interfacial electrochemical target phenomena
71(1)
2.7.2.1 Some conceptual, theoretical, and experimental notions and challenges
71(1)
2.7.2.2 Non-traditional electrode surfaces and single-entity structure and function
71(1)
2.7.2.3 Semiconductor and semimetal electrodes
72(1)
2.7.2.4 Metal deposition and dissolution processes
72(1)
2.7.2.5 Chiral surfaces and ET processes of chiral molecules
72(1)
2.7.2.6 ET reactions involving hot electrons (femto-electrochemistry)
73(1)
2.8 A few concluding remarks
73(20)
Acknowledgement
74(1)
References
74(19)
Part III
93(148)
3 Continuum Embedding Models for Electrolyte Solutions in First-Principles Simulations of Electrochemistry
95(44)
Oliviero Andreussi
Francesco Nattino
Nicolas Georg Hormann
3.1 Introduction to continuum models for electrochemistry
95(2)
3.2 Continuum models of liquid solutions
97(12)
3.2.1 Continuum interfaces
98(5)
3.2.2 Beyond local interfaces
103(2)
3.2.3 Electrostatic interaction: polarizable dielectric embedding
105(2)
3.2.4 Beyond electrostatic interactions
107(2)
3.3 Continuum diffuse-layer models
109(9)
3.3.1 Continuum models of electrolytes
109(1)
3.3.2 Helmholtz double-layer model
110(1)
3.3.3 Poisson-Boltzmann model
111(2)
3.3.4 Size-modified Poisson-Boltzmann model
113(1)
3.3.5 Stern layer and additional interactions
114(1)
3.3.6 Performance of the diffuse-layer models
114(4)
3.4 Grand canonical simulations of electrochemical systems
118(1)
3.4.1 Thermodynamics of interfaces
119(2)
3.4.2 Ab-initio based thermodynamics of electrochemical interfaces
121(2)
3.4.3 Grand canonical simulations and the CHE approximation
123(3)
3.5 Selected applications
126(13)
Acknowledgments
129(1)
References
129(10)
4 Joint and grand-canonical density-functional theory
139(1)
Ravishankar Sundararaman
Tomds A. Arias
4.1 Introduction
139(3)
4.2 JDFT variational theorem and framework
142(6)
4.2.1 Variational principle and underlying theorem
142(4)
4.2.2 Separation of effects and regrouping of terms
146(1)
4.2.3 Practical functionals and universal form for coupling
147(1)
4.3 Classical DFT with atomic-scale structure
148(1)
4.3.1 Ideal gas functionals with molecular geometry
149(1)
4.3.1.1 Effective ideal gas potentials
149(1)
4.3.1.2 Integration over molecular orientations
150(1)
4.3.1.3 Auxiliary fields
151(1)
4.3.2 Minimal excess functionals for molecular fluids
152(5)
4.4 Continuum solvation models from JDFT
157(1)
4.4.1 JDFT linear response: nonlocal `SaLSA' solvation
158(2)
4.4.2 JDFT local limit: nonlinear continuum solvation
160(3)
4.4.3 Hybrid semi-empirical approaches: `CANDLE' solvation
163(1)
4.5 Grand-canonical DFT
164(4)
4.6 Conclusions
168(1)
References
169(4)
5 Ab initio modeling of electrochemical interfaces and determination of electrode potentials
173(1)
Jia-Bo Le
Xiao-Hui Yang
Yong-Bing Zhuang
Feng Wang
Jun Cheng
5.1 Introduction
173(2)
5.2 Theoretical background of electrochemistry
175(4)
5.2.1 Definition of electrode potential
175(3)
5.2.2 Absolute potential energy of SHE
178(1)
5.3 Short survey of computational methods for modelling electrochemical interfaces
179(1)
5.4 Ab initio determination of electrode potentials of electrochemical interfaces
180(7)
5.4.1 Work function based methods
180(1)
5.4.1.1 Vacuum reference
180(1)
5.4.1.2 Vacuum reference in two steps
181(2)
5.4.2 Reference electrode based methods
183(1)
5.4.2.1 Computational standard hydrogen electrode
183(2)
5.4.2.2 Computational standard hydrogen electrode in two steps
185(2)
5.4.2.3 Computational Ag/AgCl reference electrode
187(1)
5.5 Computation of potentials of zero charge
187(3)
5.6 Summary
190(11)
Acknowledgement
191(1)
References
191(10)
6 Molecular Dynamics of the Electrochemical Interface and the Double Layer
201(20)
Axel Grofi
6.1 Introduction
201(1)
6.2 Continuum description of the electric double layer
202(2)
6.3 Equilibrium coverage of metal electrodes
204(5)
6.4 First-principles simulations of electrochemical interfaces and electric double layers
209(4)
6.5 Electric double layers at battery electrodes
213(3)
6.6 Conclusions
216(5)
Acknowledgement
216(1)
References
217(4)
7 Atomic-Scale Modelling of Electrochemical Interfaces through Constant Fermi Level Molecular Dynamics
221(20)
Assil Bouzid
Alfredo Pasquarello
7.1 Introduction
221(1)
7.2 Method
222(1)
7.3 CFL-MD in aqueous solution: Determination of redox levels
223(5)
7.4 CFL-MD at metal-water interface: The case of the Volmer reaction
228(2)
7.5 Referencing the bias potential to the SHE
230(2)
7.6 Macroscopic properties at the metal-water interface
232(4)
7.7 Atomic-scale processes at the metal-water interface
236(2)
7.8 Conclusion
238(3)
Acknowledgements
238(1)
References
239(2)
Part IV
241(60)
8 From electrons to electrode kinetics: A tutorial review
243(44)
Stephen Fletcher
8.1 Global electro-neutrality
243(1)
8.2 The electrochemical reference state
243(3)
8.3 The chemical potential
246(1)
8.4 The electrostatic potential
246(1)
8.5 The electrochemical potential
246(17)
8.5.1 The molar electrochemical potential
248(1)
8.5.2 The electrochemical potential of a single electron
248(1)
8.5.3 The Nernst equation
248(2)
8.5.4 Fermi-Dirac distribution function
250(1)
8.5.5 The molar electrochemical potential of an electron
251(1)
8.5.6 Parsing the electrochemical potential. (I) Metal in a vacuum
251(1)
8.5.7 The Volta potential difference
252(1)
8.5.8 Scanning Kelvin Probe Microscopy
253(1)
8.5.9 The membrane potential
254(1)
8.5.10 The electrochemical potential of a single proton
254(1)
8.5.11 The proton motive force
255(1)
8.5.12 The standard hydrogen half-cell
256(1)
8.5.13 The hydrated electron
257(1)
8.5.14 The hydrogen atom H*
258(1)
8.5.15 Parsing the electrochemical potential. (II) The co-sphere
258(1)
8.5.16 Electron transfer (general introduction)
259(1)
8.5.17 Johnson-Nyquist noise
260(1)
8.5.18 The Molar Gibbs reorganization energy
260(1)
8.5.19 The reaction co-ordinate
261(1)
8.5.20 The vertical energy gap
261(2)
8.5.21 Permittivity of solutions
263(1)
8.6 Electrolytes and non-electrolytes
263(12)
8.6.1 Equivalent circuit of a non-electrolyte solution
265(1)
8.6.2 Equivalent circuit of an electrolyte solution
265(1)
8.6.3 Probability of an electron jump
266(1)
8.6.4 The Klopman-Salem equation
267(1)
8.6.5 Electrode kinetics
268(1)
8.6.6 Homogeneous kinetics, first order
269(1)
8.6.7 Homogeneous kinetics, second order
269(1)
8.6.8 Homogeneous versus heterogeneous kinetics
270(1)
8.6.9 Tunneling layer approximation
271(1)
8.6.10 The back of the envelope
272(1)
8.6.11 The total rate constant of an electron transfer process
273(2)
8.7 Heterogeneous electron transfer
275(5)
8.7.1 Tafel slopes for multi-step reactions
278(2)
8.8 The future: supercatalysis by superexchange
280(7)
References
282(5)
9 Constant potential rate theory - general formulation and electrocatalysis
287(14)
Marko M. Melander
9.1 Kinetics at electrochemical interfaces
287(1)
9.2 Rate theory in the grand canonical ensemble
288(1)
9.3 Adiabatic reactions
289(3)
9.3.1 Classical nuclei
289(1)
9.3.2 Fixed potential empirical valence bond theory
290(1)
9.3.3 Nuclear tunneling
291(1)
9.4 Non-adiabatic reactions
292(3)
9.4.1 Non-adiabatic reactions in electrochemistry
292(1)
9.4.2 Rate of ET and CPET reactions
293(2)
9.5 Computational aspects
295(1)
9.6 Conclusions
296(5)
References
297(4)
Part V
301(54)
10 Thermodynamically consistent free energy diagrams with the solvated jellium method
303(26)
Georg Kastlunger
Per Lindgren
Andrew A. Peterson
10.1 Computational studies of electrochemical systems - Recent advances and modern challenges
303(2)
10.2 Thermodynamic consistency with a decoupled computational electrode model
305(3)
10.3 Solvated jellium method (SJM)
308(11)
10.3.1 Introduction
308(1)
10.3.2 Electrostatic potential profiles and charge localization
309(4)
10.3.3 Workflow of potential equilibration
313(6)
10.3.4 Shape of the jellium background charge
319(1)
10.4 Example: Mechanistic studies of the hydrogen evolution reaction (HER)
319(10)
10.4.1 Potential dependence of the elementary steps of HER
320(2)
10.4.2 Charge transfer along reaction trajectories
322(2)
10.4.3 Thermodynamically consistent free energy diagrams from first principles
324(1)
References
325(4)
11 Generation of Computational Data Sets for Machine Learning Applied to Battery Materials
329(26)
Arghya Bhowmik
Felix Tim Bolle
Ivano E. Castelli
Jin Hyun Chang
Juan Maria Garcia Lastra
Nicolai Rask Mathiesen
Alexander Sougaard Tygesen
Tejs Vegge
11.1 Introduction
329(1)
11.2 Computational workflows for production of moderate-fidelity data sets
330(10)
11.2.1 Ionic diffusion: NEB calculations
333(1)
11.2.1.1 Symmetric NEB
333(2)
11.2.1.2 Choice of functionals for NEB
335(2)
11.2.2 Disordered materials: Cluster Expansion
337(3)
11.3 High-Fidelity data sets: Ab initio molecular dynamics simulations
340(3)
11.4 Machine Learning
343(12)
Acknowledgements
346(1)
References
346(9)
Index 355
Marko M. Melander, PhD, is a researcher and adjunct professor in physical (electro)chemistry at the University of Jyväskylä in the Department of Chemistry. His work focuses on the development of theory and computational methodologies for studying (proton-coupled) electron transfer thermodynamics and kinetics at electrochemical interfaces.

Tomi T. Laurila, PhD is an Associate Professor in the Department of Electrical Engineering and Automation and Department of Chemistry and Materials Science at Aalto University in Finland where he leads the group of Microsystems Technology. The research focus of his group is on electrochemical properties of various carbon nanomaterials, computational materials science and applications of carbon nanomaterials in different sensing devices.

Kari Laasonen, PhD, is a Professor in the Department of Chemistry and Materials Science at Aalto University, Finland. He has been working on computational molecular modeling since the early 1990s. He has a strong background in ab initio molecular dynamics and modelling of aqueous systems, and his group started to model electrochemical reactions in early 2010, focusing on hydrogen and oxygen evolution reactions on different catalysts.