Muutke küpsiste eelistusi

E-raamat: Atomistic Simulations of Glasses: Fundamentals and Applications

Edited by (New York State College of Ceramics at Alfred University), Edited by (University of North Texas)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 28-Mar-2022
  • Kirjastus: Wiley-American Ceramic Society
  • Keel: eng
  • ISBN-13: 9781118940235
  • Formaat - PDF+DRM
  • Hind: 201,24 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 28-Mar-2022
  • Kirjastus: Wiley-American Ceramic Society
  • Keel: eng
  • ISBN-13: 9781118940235

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A complete reference to computer simulations of inorganic glass materials 

In Atomistic Simulations of Glasses: Fundamentals and Applications, a team of distinguished researchers and active practitioners delivers a comprehensive review of the fundamentals and practical applications of atomistic simulations of inorganic glasses. The book offers concise discussions of classical, first principles, Monte Carlo, and other simulation methods, together with structural analysis techniques and property calculation methods for the models of glass generated from these atomistic simulations, before moving on to practical examples of the application of atomistic simulations in the research of several glass systems. 

The authors describe simulations of silica, silicate, aluminosilicate, borosilicate, phosphate, halide and oxyhalide glasses with up-to-date information and explore the challenges faced by researchers when dealing with these systems. Both classical and ab initio methods are examined and comparison with experimental structural and property data provided. Simulations of glass surfaces and surface-water reactions are also covered.  

Atomistic Simulations of Glasses includes multiple case studies and addresses a variety of applications of simulation, from elucidating the structure and properties of glasses for optical, electronic, architecture applications to high technology fields such as flat panel displays, nuclear waste disposal, and biomedicine. The book also includes: 





A thorough introduction to the fundamentals of atomistic simulations, including classical, ab initio, Reverse Monte Carlo simulation and topological constraint theory methods  Important ingredients for simulations such as interatomic potential development, structural analysis methods, and property calculations are covered  Comprehensive explorations of the applications of atomistic simulations in glass research, including the history of atomistic simulations of glasses   Practical discussions of rare earth and transition metal-containing glasses, as well as halide and oxyhalide glasses  In-depth examinations of glass surfaces and silicate glass-water interactions  

Perfect for glass, ceramic, and materials scientists and engineers, as well as physical, inorganic, and computational chemists, Atomistic Simulations of Glasses: Fundamentals and Applications is also an ideal resource for condensed matter and solid-state physicists, mechanical and civil engineers, and those working with bioactive glasses. Graduate students, postdocs, senior undergraduate students, and others who intend to enter the field of simulations of glasses would also find the book highly valuable.  

 

Arvustused

Modeling and simulation are crucial for understanding structure-property relationships in glass-forming systems and for accelerating the design of next-generation glassy materials. Atomistic Simulations of Glasses is a comprehensive volume dedicated to the topic of atomic-scale modeling of glassy materials, with particular emphasis on silicate glasses of practical industrial interest. As such, this book fills a critical gap in the literature, offering an excellent introduction for newcomers to atomistic modeling, as well as a comprehensive and state-of-the-art reference for practitioners in the field.

Atomistic Simulations of Glasses, published by ACerS-Wiley, consists of 15 chapters written by experts from around the world. It is edited by two leading authorities in computational glass science: Jincheng Du (University of North Texas) and Alastair N. Cormack (Alfred University). The book itself is gorgeous, printed in full color on high-quality paper. It is designed in a reader-friendly format, including a comprehensive index, an extensive list of references at the end of each chapter, and a helpful table to decode every acronym used throughout the book. Each chapter is well written and has been carefully polished. The text also flows smoothly across chapters, which is sometimes a problem in edited volumes.

The first five chapters are devoted to fundamentals of atomistic modeling techniques for glassy systems, including classical simulation methods (Chapter 1), quantum mechanical techniques (Chapter 2), reverse Monte Carlo (Chapter 3), structural analysis methods (Chapter 4), and topological constraint theory (Chapter 5). Each of these chapters does a great job at providing both foundational knowledge and discussing the state-of-the-art in methods and tools. The chapter on topological constraint theory is especially interesting because this is a family of techniques developed specifically for glassy materials.

The latter 10 chapters of the book focus on application of these techniques for simulating various glass families of interest. These chapters cover a wide range of silicate, aluminosilicate, and borosilicate glasses, as well as phosphate, fluoride, and oxyfluoride systems. The coverage of transition metal and rare-earth-containing glasses is also a nice touch. There is a particular emphasis on bioactive glasses and glasses for nuclear waste immobilization. As a whole, the 10 application-focused chapters do an excellent job demonstrating the utility and versatility of atomistic simulation approaches for addressing problems of practical concern in the glass science and engineering community. These chapters also provide good perspective on specific needs for future developments in the field.

There are a few missing topics that would have been valuable to include in the book. While reactive force fields are mentioned briefly, an entire chapter devoted to the principles and applications of reactive force fields such as ReaxFF would have been a nice addition, especially because reactive force fields are becoming increasingly important in the glass science community. Also, given the importance of thermal history in governing the structure and properties of glasses, it would have been worthwhile to include a chapter on accessing long time scales, e.g., using kinetic Monte Carlo, meta-dynamics, or the activation-relaxation technique, all of which have been applied to noncrystalline systems in the literature and can enable simulations to access experimental time scales. It also would have been helpful to expand the chapter on reverse Monte Carlo to include other Monte Carlo techniques more broadly; for example, Metropolis Monte Carlo is a computationally efficient alternative to molecular dynamics for calculating glass structure and static properties. Finally, given the large amount of research activity in modeling of metallic glasses, a chapter on atomistic simulations of metallic glasses would be a nice addition.

Overall, Atomistic Simulations of Glasses is a very welcome addition to the literature and highly recommended for both students and professionals in the field of computational glass science. John C. Mauro is a Dorothy Pate Enright Professor in the Department of Materials Science and Engineering at The Pennsylvania State University

List of Contributors
xv
Preface xix
List of Abbreviations
xxii
Part I Fundamentals of Atomistic Simulations
1(148)
1 Classical Simulation Methods
1(29)
Alastair N. Cormack
1.1 Introduction
1(2)
1.2 Simulation Techniques
3(6)
1.2.1 Molecular Dynamics (MD)
3(1)
1.2.1.1 Integrating the Equations of Motion
3(2)
1.2.1.2 Thermostats and Barostats
5(1)
1.2.2 Monte Carlo (MC) Simulations
6(2)
1.2.2.1 Kinetic Monte Carlo
8(1)
1.2.2.2 Reverse Monte Carlo
9(1)
1.3 The Born Model
9(9)
1.3.1 Ewald Summation
10(4)
1.3.2 Potentials
14(1)
1.3.2.1 Transferability of Potential Parameters: Self-consistent Sets
15(1)
1.3.2.2 Ion Polarizability
16(1)
1.3.2.3 Potential Models for Borates
17(1)
1.3.2.4 Modeling Reactivity: Electron Transfer
17(1)
1.4 Calculation of Observables
18(5)
1.4.1 Atomic Structure
18(5)
1.4.2 Hyperdynamics and Peridynamics
23(1)
1.5 Glass Formation
23(2)
1.5.1 Bulk Structure
24(1)
1.5.2 Surfaces and Fibers
24(1)
1.6 Geometry Optimization and Property Calculations
25(5)
References
26(4)
2 Ab Initio Simulation of Amorphous Materials
30(30)
Rajendra Thapa
David A. Drabold
2.1 Introduction
30(8)
2.1.1 Big Picture
30(1)
2.1.2 The Limits of Experiment
31(1)
2.1.2.1 The Scourge of Averaging
31(1)
2.1.2.2 Diffraction
31(1)
2.1.2.3 Spectroscopic Information
31(1)
2.1.3 Synergy Between Experiment and Modeling
32(1)
2.1.4 History of Simulations and the Need for Ab Initio Methods
32(2)
2.1.5 The Difference Between Ab Initio and Classical MD
34(1)
2.1.6 Ingredients of DFT
35(1)
2.1.7 What DFT Can Provide
36(1)
2.1.8 The Emerging Solution for Large Systems and Long Times: Machine Learning
36(2)
2.1.9 A Practical Aid: Databases
38(1)
2.2 Methods to Produce Models
38(8)
2.2.1 Simulation Paradigm: Melt Quench
39(2)
2.2.2 Information Paradigm
41(1)
2.2.3 Teaching Chemistry to RMC: FEAR
42(2)
2.2.4 Gap Sculpting
44(2)
2.3 Analyzing the Models
46(8)
2.3.1 Structure
47(1)
2.3.1.1 Radial Distribution Function
47(2)
2.3.1.2 Voronoi Analysis
49(1)
2.3.2 Electronic Structure
49(1)
2.3.2.1 Electronic Density of States
49(1)
2.3.2.2 Inverse Participation Ratio
50(1)
2.3.2.3 Space Projected Conductivity
50(2)
2.3.3 Vibrational Properties
52(2)
2.4 Conclusion
54(6)
Acknowledgments
55(1)
References
55(5)
3 Reverse Monte Carlo Simulations of Noncrystalline Solids
60(29)
Shinji Kohara
Laszlo Pusztai
3.1 Introduction -- Why RMC Is Needed?
60(1)
3.2 Reverse Monte Carlo Modeling
61(4)
3.2.1 The Basic RMC Algorithm
62(2)
3.2.2 Information Deficiency
64(1)
3.2.3 Preparation of Reference Structures: Hard Sphere Monte Carlo
65(1)
3.2.4 Other Methods for Preparing Suitable Structural Models
65(1)
3.3 Topological Analyses
65(4)
3.3.1 Ring Statistics
66(1)
3.3.2 Cavity Analysis
66(1)
3.3.3 Persistent Homology Analysis
66(3)
3.4 Applications
69(16)
3.4.1 Single Component Liquid and Amorphous Materials: Amorphous (A)- and Liquid (L-) Silicon (Si), and L-Phosphorous (P) Under High Pressure and High Temperature
69(1)
3.4.1.1 L-Si and a-Si
69(2)
3.4.1.2 L-P Under High Pressure and High Temperature
71(1)
3.4.2 Oxide Glasses
71(1)
3.4.2.1 SiO2 Glass
71(2)
3.4.2.2 R2O--SiO2, Glass (R = Na, K)
73(5)
3.4.2.3 CaO--Al2O3 Glass
78(3)
3.4.3 Chalcogenide Glasses (with a Focus on the Ge2Sb2Te5 Alloy)
81(3)
3.4.4 Metallic Glasses
84(1)
3.5 Conclusion
85(4)
Acknowledgments
85(1)
References
85(4)
4 Structure Analysis and Properties Calculations
89(34)
Davide Presti
Francesco Muniz-Miranda
Francesco Tavanti
Alfonso Pedone
4.1 Introduction
89(1)
4.2 Structure Analysis
90(8)
4.2.1 Salient Features of Glass Structures
90(2)
4.2.2 Classification of the Range Order in Amorphous Solids
92(1)
4.2.2.1 Short-Range Order
92(1)
4.2.2.2 Intermediate-Range Order
93(2)
4.2.2.3 Long-Range Order
95(1)
4.2.3 Real Space Correlation Functions
96(2)
4.3 Spectroscopic Properties: Validating the Structural Models
98(7)
4.3.1 X-ray and Neutron Diffraction Spectra
98(2)
4.3.2 Vibrational Spectra
100(1)
4.3.2.1 The "Static" Method
100(2)
4.3.2.2 The "Dynamical" Method
102(2)
4.3.3 NMR Spectra
104(1)
4.4 Transport Properties
105(6)
4.4.1 Diffusion Coefficient and Diffusion Activation Energy
107(2)
4.4.2 Viscosity
109(1)
4.4.3 Thermal Conductivity
109(2)
4.5 Mechanical Properties
111(7)
4.5.1 Elastic Constants
112(2)
4.5.2 Stress--Strain Diagrams and Fracture Mechanism
114(4)
4.6 Concluding Remarks
118(5)
References
118(5)
5 Topological Constraint Theory of Glass: Counting Constraints by Molecular Dynamics Simulations
123(26)
Yushu Hu
Han Liu
Kai Yang
Qi Zhou
Christian G. Hoover
N. M. Anoop Krishnan
Morten M. Smedskjaer
Matthieu Micoulaut
Lijie Quo
Mathieu Bauchy
5.1 Introduction
123(2)
5.2 Background on Topological Constraint Theory
125(4)
5.2.1 Rigidity of Mechanical Networks
125(1)
5.2.2 Application to Atomic Networks
126(1)
5.2.3 Constraint Enumeration Under Mean-Field Approximation
126(1)
5.2.4 Polytope-Based Description of Glass Rigidity
127(1)
5.2.5 Impact of Temperature
128(1)
5.2.6 Need for Molecular Dynamics Simulations
128(1)
5.3 Counting Constraints from Molecular Dynamics Simulations
129(11)
5.3.1 Constraint Enumeration Based on the Relative Motion Between Atoms
129(1)
5.3.1.1 Enumeration of Bond-Stretching Constraints
129(2)
5.3.1.2 Enumeration of Bond-Bending Constraints
131(1)
5.3.1.3 Effect of Temperature on the Topological Constraints
131(2)
5.3.1.4 Limitations
133(1)
5.3.2 Computation of the Internal Stress
134(1)
5.3.2.1 Stress Per Atom Formalism
134(1)
5.3.2.2 Stress in Isolated Clusters
135(1)
5.3.2.3 Network Stress as a Signature of Stressed-Rigid Networks
136(1)
5.3.3 Computation of the Floppy Modes
137(1)
5.3.4 Dynamical Matrix Analysis
138(2)
5.4 Conclusion
140(9)
Acknowledgments
140(1)
References
141(8)
Part II Applications of Atomistic Simulations in Glass Research
149(374)
6 History of Atomistic Simulations of Glasses
149(37)
Alastair N. Cormack
6.1 Introduction
149(2)
6.2 Simulation Techniques
151(1)
6.2.1 Monte Carlo Techniques
151(1)
6.2.2 Molecular Dynamics
151(1)
6.3 Classical Simulations: Interatomic Potentials
152(19)
6.3.1 Potential Models for Silica
156(4)
6.3.1.1 Silica: Quantum Mechanical Simulations
160(1)
6.3.2 Modified Silicates and Aluminosilicates
161(6)
6.3.3 Borate Glasses
167(4)
6.3.3.1 Borates: Quantum Mechanical Simulations
171(1)
6.4 Simulations of Surfaces
171(2)
6.5 Computer Science and Engineering
173(13)
6.5.1 Software
174(2)
6.5.2 Hardware
176(2)
References
178(8)
7 Silica, Silicate, and Aluminosilicate Glasses
186(38)
Thiruvilla Mahadevan
Jincheng Du
7.1 Introduction
186(1)
7.2 Atomistic Simulations of Silicate Glasses: Ingredients and Critical Aspects
187(3)
7.3 Characterization and Experimental Validation of Structural and Dynamic Features of Simulated Glasses
190(9)
7.3.1 Structural Characterizations
190(4)
7.3.2 Dynamic Properties of Simulated Glasses
194(1)
7.3.3 Validation and Experimental Confirmation of Structural and Dynamic Properties
195(1)
7.3.3.1 Diffraction Methods
195(2)
7.3.3.2 Nuclear Magnetic Resonance
197(1)
7.3.3.3 Vibrational Spectral Characterization
198(1)
7.4 MD Simulations of Silica Glasses
199(3)
7.5 MD Simulations of Alkali Silicate and Alkaline Earth Silicate Glasses
202(4)
7.5.1 Local Environments and Distribution of Alkali Ions
202(3)
7.5.2 The Mixed Alkali Effect
205(1)
7.5.3 Alkaline Earth Addition to Alkali Silicates
205(1)
7.6 MD Simulations of Aluminosilicate Glasses
206(1)
7.7 MD Simulations of Nanoporous Silica and Silicate Glasses
207(2)
7.8 AIMD Simulations of Silica and Silicate Glasses
209(1)
7.9 Summary and Outlook
210(14)
Acknowledgments
212(1)
References
212(12)
8 Borosilicate and Boroaluminosilicate Glasses
224(37)
Lu Deng
Jincheng Du
8.1 Introduction
224(1)
8.2 Experimental Determination and Theoretical Models of Boron N4 Values in Borosilicate Glass
225(4)
8.2.1 Experimental Results on Boron Coordination Number
225(1)
8.2.2 Theoretical Models in Predicting Boron NA Value
226(1)
8.2.2.1 The Yun Bray Model and Variations
226(1)
8.2.2.2 The Du and Stebbins Model
227(1)
8.2.2.3 The Two-State Model and Extension
228(1)
8.2.2.4 Lu, Deng, Du, and Vienna Model
228(1)
8.3 Ab Initio Versus Classical MD Simulations of Borosilicate Glasses
229(1)
8.4 Empirical Potentials for Borate and Borosilicate Glasses
230(6)
8.4.1 Recent Development of Rigid Ion Potentials for Borosilicate Glasses
231(4)
8.4.2 Development of Polarizable Potentials for Borate and Borosilicate Glasses
235(1)
8.5 Evaluation of the Potentials
236(3)
8.6 Effects of Cooling Rate and System Size on Simulated Borosilicate Glass Structures
239(1)
8.7 Applications of MD Simulations of Borosilicate Glasses
240(5)
8.7.1 Borosilicate Glass
240(2)
8.7.2 Boroaluminosilicate Glasses
242(1)
8.7.3 Boron Oxide-Containing Multicomponent Glass
243(2)
8.8 Conclusion
245(1)
Acknowledgments
246(1)
8.A Available Empirical Potentials for Boron-Containing Systems
246(1)
8.A.1 Borosilicate and Boroaluminosilicate Potentials -- Kieu et al. and Deng and Du
246(3)
8.A.2 Borosilicate Potential -- Wang et al.
249(1)
8.A.3 Borosilicate Potential -- Inoue et al.
249(1)
8.A.4 Boroaluminosilicate Potential -- Ha and Garofalini
250(1)
8.A.5 Borosilicate and Boron-Containing Oxide Glass Potential -- Deng and Du
251(1)
8.A.6 Borate, Boroaluminate, and Borosilicate Potential -- Sundararaman et al.
251(4)
8.A.7 Borate and Borosilicate Polarizable Potential -- Yu et al.
255(1)
References
256(5)
9 Atomistic Simulation of Nuclear Waste Glasses
261(34)
Jean-Marc Delaye
9.1 Preamble
261(1)
9.2 Introduction to French Nuclear Glass
261(5)
9.2.1 Chemical Composition
261(1)
9.2.2 About the Long-Term Behavior (Irradiation, Glass Alteration, He Accumulation)
262(2)
9.2.3 What Can Atomistic Simulations Contribute?
264(2)
9.3 Computational Methodology
266(3)
9.3.1 Review of Existing Classical Potentials for Borosilicate Glasses
266(1)
9.3.2 Preparation of a Glass
267(1)
9.3.3 Displacement Cascade Simulations
268(1)
9.3.4 Short Bibliography About Simplified Nuclear Glass Structure Studies
268(1)
9.4 Simulation of Radiation Effects in Simplified Nuclear Glasses
269(13)
9.4.1 Accumulation of Displacement Cascades and the Thermal Quench Model
269(4)
9.4.2 Preparation of Disordered and Depolymerized Glasses
273(1)
9.4.3 Origin of the Hardness Change Under Irradiation
274(4)
9.4.4 Origin of the Fracture Toughness Change Under Irradiation
278(4)
9.5 Simulation of Glass Alteration by Water
282(6)
9.5.1 Contribution from Ab Initio Calculations
282(2)
9.5.2 Contribution from Monte Carlo Simulations
284(4)
9.6 Gas Incorporation: Radiation Effects on He Solubility
288(4)
9.6.1 Solubility Model
288(1)
9.6.2 Interstitial Sites in SiO2-B2O3-Na2O Glasses
289(2)
9.6.3 Discussion About He Solubility in Relation to the Radiation Effects
291(1)
9.7 Conclusion
292(3)
Acknowledgments
292(1)
References
293(2)
10 Phosphate Glasses
295(52)
Gavin Mountjoy
10.1 Introduction to Phosphate Glasses
295(4)
10.1.1 Applications of Phosphate Glasses
295(1)
10.1.2 Synthesis of Phosphate Glasses
295(1)
10.1.3 The Modified Random Network Model Applied to Phosphate Glasses
296(1)
10.1.4 The Tetrahedral Phosphate Glass Network
296(1)
10.1.5 Modifier Cations in Phosphate Glasses
297(2)
10.2 Modeling Methods for Phosphate Glasses
299(4)
10.2.1 Configurations of Atomic Coordinates
299(1)
10.2.2 Molecular Modeling Versus Reverse Monte Carlo Modeling
300(1)
10.2.3 Classical Versus Ab Initio Molecular Modeling
300(1)
10.2.4 Evaluating the Simulation of Interatomic Interactions
301(2)
10.2.5 Evaluating Models of Glasses by Comparison with Experimental Data
303(1)
10.3 Modeling Pure Vitreous P2O5
303(4)
10.3.1 Modeling of Crystalline P2O5
303(2)
10.3.2 Modeling of Vitreous P2O5
305(1)
10.3.3 Cluster Models of Vitreous P2O5
306(1)
10.4 Modeling Phosphate Glasses with Monovalent Cations
307(7)
10.4.1 Modeling Lithium Phosphate Glasses
307(1)
10.4.2 Modeling Sodium Phosphate Glasses
308(4)
10.4.3 Modeling Phosphate Glasses with Other Monovalent Cations
312(1)
10.4.4 Modeling Phosphate Glasses with Monovalent Cations and Addition of Halides
312(1)
10.4.5 Cluster Models of Alkali Phosphate Glasses
313(1)
10.5 Modeling Phosphate Glasses with Divalent Cations
314(9)
10.5.1 Modeling Zinc Phosphate Glasses
314(3)
10.5.2 Modeling Zinc Phosphate Glasses with Additional Cations
317(1)
10.5.3 Modeling Alkaline Earth Phosphate Glasses
318(3)
10.5.4 Modeling Lead Phosphate Glasses
321(2)
10.6 Modeling Phosphate-Based Glasses for Biomaterials Applications
323(4)
10.6.1 Modeling Na2O--CaO--P2O5 Glasses with 45 mol% P2O5
323(2)
10.6.2 Modeling Na2O--CaO--P2O5 Glasses with 50 mol% P2O5
325(1)
10.6.3 Modeling Na2O--CaO--P2O5 Glasses with Additional Cations
326(1)
10.7 Modeling Phosphate Glasses with Trivalent Cations
327(6)
10.7.1 Modeling Iron Phosphate Glasses
327(2)
10.7.2 Cluster Models of Iron Phosphate Glasses
329(1)
10.7.3 Modeling Trivalent Rare Earth Phosphate Glasses
330(1)
10.7.4 Modeling Aluminophosphate Glasses
331(2)
10.8 Modeling Phosphate Glasses with Tetravalent and Pentavalent Cations
333(1)
10.9 Modeling Phosphate Glasses with Mixed Network Formers
334(3)
10.9.1 Modeling Borophosphate Glasses
334(1)
10.9.2 Modeling Phosphosilicate Glasses
335(2)
10.10 Modeling Bioglass 45S and Related Glasses
337(3)
10.10.1 Modeling Bioglass 45S and Related Glasses from the Same System
337(2)
10.10.2 Modeling Bioglass 45S and Related Glasses with Additional Components
339(1)
10.11 Summary
340(7)
References
341(6)
11 Bioactive Glasses
347(20)
Jamieson K. Christie
11.1 Introduction
347(1)
11.2 Methodology
348(1)
11.3 Development of Interatomic Potentials
348(2)
11.4 Structure of 45S5 Bioglass
350(4)
11.5 Inclusion of Ions into Bioactive Glass and the Effect on Structure and Bioactivity
354(5)
11.6 Glass Nanoparticles and Surfaces
359(2)
11.7 Discussion and Future Work
361(6)
References
362(5)
12 Rare Earth and Transition Metal Containing Glasses
367(72)
Jincheng Du
Monia Montorsi
Silvia Barbi
Xiaonan Lu
12.1 Introduction
367(6)
12.1.1 TM and RE Oxides in Glasses: Potential Applications and Structural Roles
367(2)
12.1.2 Rare Earth Ions in Glasses: Effects of Local Structure and Clustering Behaviors
369(1)
12.1.3 Redox Reaction and Transition Metal with Multioxidation States in Glasses
369(1)
12.1.4 Effect of Matrix Composition on Multioxidation States in Glasses Containing TM
370(1)
12.1.5 The Role of MD in Investigating TM and RE Containing Glasses
371(2)
12.2 Simulation Methodology
373(8)
12.2.1 MD Simulation Details
373(2)
12.2.2 Structural and Cation Distribution Analysis
375(3)
12.2.3 Vibrational and Dynamic Property Calculations
378(2)
12.2.4 Quantitative Structure-Property Relationship (QSPR) Analysis
380(1)
12.2.5 Electronic Structures from First Principles Calculations
381(1)
12.3 Case Studies of MD Simulations of RE and TM Containing Glasses
381(42)
12.3.1 Rare Earth Containing Silicate and Phosphate Glasses
381(1)
12.3.1.1 Erbium-Doped Silica and Silicate Glasses: From Melt-Quench to Ion Implantation
381(7)
12.3.1.2 Europium and Praseodymium-Doped Silicate Glasses
388(4)
12.3.1.3 Cerium-Doped Aluminophosphate and Mixed Former Glasses
392(14)
12.3.2 Alkali Vanadophosphate Glasses as a Mixed Conductor
406(1)
12.3.2.1 General Features of Vanadophosphate Glasses
406(3)
12.3.2.2 Sodium Vanadophosphate Glasses
409(3)
12.3.2.3 Lithium Vanadophosphate Glass
412(5)
12.3.3 Zirconium Containing Silicate and Borosilicate Glasses for Nuclear Waste Disposal
417(1)
12.3.3.1 Structures of Zirconia Containing Silicate and Borosilicate Glasses
417(2)
12.3.3.2 Effect of Zirconia on Physical Properties and Chemical Durability
419(4)
12.4 Conclusions
423(16)
Acknowledgments
423(1)
References
424(15)
13 Fluoride and Oxyfluoride Glasses
439(25)
Junjie Zhao
Xiuxia Xu
Xusheng Qiao
Jincheng Du
13.1 Introduction
439(2)
13.2 General Structure Features of Fluoride and Oxyfluoride Glasses
441(4)
13.2.1 Structure Features of Fluoride Glasses
441(2)
13.2.2 Structure Features of Oxyfluoride Glasses
443(1)
13.2.3 Phase Separation in Fluoride and Oxyfluoride Glasses
443(2)
13.3 Structures and Properties of Fluoride Glasses from MD Simulations
445(6)
13.3.1 General Structures from MD Simulations
445(1)
13.3.2 Cation Coordination and Structural Roles
446(2)
13.3.3 Fluorine Environments
448(1)
13.3.4 Property Calculations Based on Structures from MD
449(2)
13.4 MD Simulations of Fluoroaluminosilicate Oxyfluoride Glasses
451(4)
13.4.1 Oxide and Fluoride Glass Phase Separation Observed from MD Simulations
451(2)
13.4.2 Oxide-Fluoride Interfacial Structure Features from MD Simulations
453(1)
13.4.3 Correlation of Structural Features Between MD and Crystallization
454(1)
13.5 Ab Initio MD Simulations of Oxyfluoride Glasses
455(1)
13.6 Conclusions
456(8)
Acknowledgments
456(1)
References
457(7)
14 Glass Surface Simulations
464(26)
Todd R. Zeitler
Alastair N. Cormack
14.1 Introduction
464(1)
14.2 Classical MD Surface Simulations
464(13)
14.2.1 Amorphous Silica Surfaces
466(2)
14.2.2 Multicomponent Oxide Glass Surfaces
468(2)
14.2.2.1 Bioactive Glasses
470(1)
14.2.3 "Wet" Glass Surfaces
471(3)
14.2.3.1 Reactive Potentials
474(3)
14.3 First Principles Surface Simulations
477(6)
14.3.1 Silica Surfaces
478(1)
14.3.2 Multicomponent Oxide Glass Surfaces
478(2)
14.3.2.1 Bioactive Glasses
480(2)
14.3.3 "Wet" Glass Surfaces
482(1)
14.4 Summary
483(7)
Acknowledgments
484(1)
References
484(6)
15 Simulations of Glass-Water Interactions
490(33)
Jessica M. Rimsza
Thiruvilla S. Mahadevan
Lu Deng
Jincheng Du
15.1 Introduction
490(4)
15.1.1 Glass Dissolution Process and Experimental Characterizations
491(1)
15.1.2 Types of Atomistic Simulation Methods for Studying Glass-Water Interactions
492(2)
15.2 First-Principles Simulations of Glass-Water Interactions
494(7)
15.2.1 Brief Introduction to Methods
494(1)
15.2.2 Energy Barriers for Si---O---Si Bond Breakage
494(1)
15.2.3 Reaction Mechanism for Si---O---Si Bond Breakage
495(1)
15.2.4 Strained Si--O--Si Linkages
495(2)
15.2.5 Reaction Energies for Multicomponent Linkages
497(1)
15.2.6 Effect of pH on Si--O--Si Hydrolysis Reactions
498(1)
15.2.7 Nanoconfinement of Water in Porous Materials
499(1)
15.2.8 Oniom or QM/MM Simulations
500(1)
15.2.9 Areas for Improvement/Additional Research
501(1)
15.3 Classical Molecular Dynamics Simulations of Water-Glass Interactions
501(9)
15.3.1 Brief Introduction and History
501(1)
15.3.2 Nonreactive Potentials
502(1)
15.3.3 Reactive Potentials
503(1)
15.3.4 Silica Glass-Water Interactions
503(3)
15.3.5 Silicate Glass-Water Interactions
506(2)
15.3.6 Other Glasses-Water Interactions
508(1)
15.3.7 Areas for Improvement
508(2)
15.4 Challenges and Outlook
510(1)
15.4.1 Extending the Length and Time Scales of Atomistic Simulation
510(1)
15.4.2 Reactive Potential Development
510(1)
15.5 Concluding Remarks
511(12)
Acknowledgments
512(1)
References
512(11)
Index 523
Jincheng Du, PhD, is Professor of materials science and engineering at the University of North Texas. He is Chair of the TC27 Technical Committee on Atomistic Simulation with the International Commission of Glass and is the Editor of the Journal of the American Ceramic Society.

Alastair N. Cormack, PhD, Professor at the New York State College of Ceramics at Alfred University. He is a leading authority in the field of computer modeling of materials, focusing on the atomic-scale physics and chemistry of ceramics and glass.