Muutke küpsiste eelistusi

E-raamat: Attosecond and Strong-Field Physics: Principles and Applications

(Kansas State University), (Kansas State University), (Kansas State University), (Nanjing University of Science and Technology, China)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 10-May-2018
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108187251
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 86,44 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 10-May-2018
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108187251
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Probing and controlling electrons and nuclei in matter at the attosecond timescale became possible with the generation of attosecond pulses by few-cycle intense lasers, and has revolutionized our understanding of atomic structure and molecular processes. This book provides an intuitive approach to this emerging field, utilizing simplified models to develop a clear understanding of how matter interacts with attosecond pulses of light. An introductory chapter outlines the structure of atoms and molecules and the properties of a focused laser beam. Detailed discussion of the fundamental theory of attosecond and strong-field physics follows, including the molecular tunnelling ionization model (MO-ADK theory), the quantitative rescattering (QRS) model, and the laser induced electronic diffraction (LIED) theory for probing the change of atomic configurations in a molecule. Highlighting the cutting-edge developments in attosecond and strong field physics, and identifying future opportunities and challenges, this self-contained text is invaluable for students and researchers in the field.

Arvustused

'This is the book we were waiting forDefinitely a must-have!' Jens Biegert, The Institute of Photonic Sciences (ICFO) ' a very accessible introduction to the emerging fields of attosecond science and strong field laser physics This book will be a valuable resource for both new students and experienced researchers in the field.' Mark Vrakking, Max Born Institute, Berlin 'The first reference in the attosecond and strong field community.' Katsumi Midorikawa, Director, RIKEN Center for Advanced Photonics 'This is a textbook dedicated to graduate students who wish to understand strong laser fields and attosecond physics. The book is very clearly written and beautifully illustrated, the majority of figures being in color. Exercises and references are found at the end of all chapters Since attosecond pulses are a booming area of research, with many applications, this book is a must for university libraries and can be read easily by students and experts in the field. Daniela Dragoman, Optics & Photonics News

Muu info

An introductory textbook on attosecond and strong field physics, covering fundamental theory and modeling techniques, as well as future opportunities and challenges.
Preface ix
1 Elements of Atoms, Molecules, and Wave Propagation
1(73)
1.1 One-Electron Atoms
1(15)
1.2 Two-Electron Atoms
16(5)
1.3 Many-Electron Atoms
21(5)
1.4 General Concepts and Structure of Diatomic Molecules
26(8)
1.5 Structure of Polyatomic Molecules
34(11)
1.6 Molecular Spectra
45(9)
1.7 Propagation of a Laser Pulse in Free Space
54(8)
1.8 Matrix Optics
62(3)
1.9 Huygens' Integral through the General ABCD System
65(9)
Notes and Comments
70(1)
Exercises
70(2)
References
72(2)
2 Basic Formulation of Interactions between an Intense Laser Pulse and Atoms
74(38)
2.1 The Formal Theory
74(2)
2.2 Formulation of the Solution of the TDSE
76(10)
2.3 Ultrashort Femtosecond Lasers: Representation, Generation, and Characterization
86(8)
2.4 Tunnel Ionization Theory
94(6)
2.5 SFA and Its Modifications
100(12)
Notes and Comments
108(1)
Exercises
108(1)
References
109(3)
3 Strong-Field Ionization and Low-Energy Electron Spectra of Atoms and Molecules
112(52)
3.1 Total Ionization Yield
112(7)
3.2 Total Ionization Yields versus Laser Intensity and Wavelength: Experiment versus Theory
119(4)
3.3 Low-Energy Electrons and 2D Momentum Spectra: Multiphoton Ionization Regime
123(5)
3.4 Surprising Features of Photoelectron Spectra for Ionization by Strong Mid-Infrared Lasers
128(7)
3.5 Probing Atoms and Molecules with Low-Energy Photoelectrons by Strong-Field Ionization
135(3)
3.6 Laser-Induced Rotational and Vibrational Wave Packets of Molecules
138(10)
3.7 Strong-Field Ionization of Molecules
148(16)
Notes and Comments
158(1)
Exercises
158(1)
References
159(5)
4 Rescattering and Laser-Induced Electron Diffraction
164(36)
4.1 Introduction
164(1)
4.2 Derivation of the QRS Theory for High-Energy ATI Electrons
165(11)
4.3 Extracting Structure Information from Experimental HATI Spectra
176(2)
4.4 LIED for Ultrafast Self-Imaging of Molecules: Theory
178(6)
4.5 Experimental Demonstration of Dynamic Imaging: LIED and Other Methods
184(16)
Notes and Comments
196(1)
Exercises
197(1)
References
197(3)
5 Fundamentals of High-Order Harmonic Generation
200(36)
5.1 Introduction
200(1)
5.2 Theory of High-Order Harmonic Generation by an Atom
201(8)
5.3 QRS Theory
209(4)
5.4 Phase Matching and Propagation of HHG in the Gas Medium
213(10)
5.5 Dependence of HHG Spectra on Macroscopic Conditions
223(13)
Notes and Comments
232(1)
Exercises
232(1)
References
233(3)
6 Applications of High-Order Harmonics: HHG Spectroscopy and Optimization of Harmonics
236(56)
6.1 Studies of High-Order Harmonic Generation from Linear Molecules
236(16)
6.2 High-Harmonics Spectroscopy from Polyatomic Molecules and Dynamically Evolving Targets
252(19)
6.3 Routes to Optimizing Intense HHG
271(21)
Notes and Comments
286(1)
Exercises
286(1)
References
287(5)
7 Generation and Characterization of Attosecond Pulses
292(54)
7.1 Introduction
292(1)
7.2 APTs
292(6)
7.3 Temporal Information Extracted from APT Photoionization Experiments
298(8)
7.4 Generation of IAPs
306(6)
7.5 Characterization of IAPs
312(14)
7.6 Probing Time Delay in Atomic Photoionization Using an IAP
326(20)
Notes and Comments
340(1)
Exercises
341(1)
References
342(4)
8 Probing Electron Dynamics with Isolated Attosecond Pulses
346(44)
8.1 Description of Electron Dynamics and Measurements
346(9)
8.2 Attosecond Transient Absorption Spectroscopy
355(3)
8.3 General Features of ATA Spectra for Atoms below the First Ionization Threshold
358(4)
8.4 ATA Spectrogram for Autoionizing States
362(9)
8.5 Propagation of ATA Spectra in the Gas Medium
371(1)
8.6 ATA Spectroscopy for Small Molecules
372(6)
8.7 Elements of Probing Attosecond Electron Dynamics and Wave-Packet Retrieval
378(6)
8.8 Probing Attosecond Electron Dynamics of Complex Molecules
384(6)
Notes and Comments
387(1)
Exercises
387(1)
References
388(2)
Appendix Constants, Conversion Factors, Atomic Units and Useful Formulae
390(2)
A.1 Useful Constants
390(1)
A.2 Energy Conversion Factors
390(1)
A.3 Momentum, Wavelength, and Energy
390(1)
A.4 Atomic Units (au): e = h = m = 1
390(1)
A.5 Shorthand Notations
391(1)
A.6 Lasers
391(1)
A.7 Oscillator Strength and Spontaneous Emission Rates
391(1)
A.8 Pressure
391(1)
Further Reading 392(2)
Solutions for Selected Problems 394(7)
Index 401
C. D. Lin is a University Distinguished Professor at Kansas State University. His group has made important contributions to the field of attosecond science including the development of the molecular tunnelling Ionization model (MO-ADK theory) and the quantitative rescattering (QRS) model. Anh-Thu Le is a Research Professor at Kansas State University. He has over twenty years' research experience in atomic, molecular and optical physics and together with Dr C. D. Lin he developed the quantitative rescattering theory (QRS) for high-order harmonic generation. Cheng Jin is a Professor at Nanjing University of Science and Technology, China. His research interests include optimization of the generation of isolated attosecond pulses by synthesis of multicolor laser waveforms in the gas medium. Hui Wei is a postdoctoral fellow at Kansas State University. His research interests include characterization and applications of attosecond pulses to molecules and solids.