Muutke küpsiste eelistusi

E-raamat: Audio Processes: Musical Analysis, Modification, Synthesis, and Control

  • Formaat: 752 pages
  • Ilmumisaeg: 13-Sep-2016
  • Kirjastus: Routledge
  • Keel: eng
  • ISBN-13: 9781317329183
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 71,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 752 pages
  • Ilmumisaeg: 13-Sep-2016
  • Kirjastus: Routledge
  • Keel: eng
  • ISBN-13: 9781317329183
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Designed for music technology students, enthusiasts, and professionals, Audio Processes: Musical Analysis, Modification, Synthesis, and Control describes the practical design of audio processes, with a step-by-step approach from basic concepts all the way to sophisticated effects and synthesizers. The themes of analysis, modification, synthesis, and control are covered in an accessible manner and without requiring extensive mathematical skills. The order of material aids the progressive accumulation of understanding, but topics are sufficiently contained that those with prior experience can read individual chapters directly.

Extensively supported with block diagrams, algorithms, and audio plots, the ideas and designs are applicable to a wide variety of contexts. The presentation style enables readers to create their own implementations, whatever their preferred programming language or environment. The designs described are practical and extensible, providing a platform for the creation of professional quality results for many different audio applications.

There is an accompanying website (www.routledge.com/cw/creasey), which provides further material and examples, to support the book and aid in process development.

This book includes:











A comprehensive range of audio processes, both popular and less well known, extensively supported with block diagrams and other easily understood visual forms.





Detailed descriptions suitable for readers who are new to the subject, and ideas to inspire those with more experience.





Designs for a wide range of audio contexts that are easily implemented in visual dataflow environments, as well as conventional programming languages.
Abbreviations xv
Preface xvii
Acknowledgements xxi
Chapter 1 Introduction
1(16)
1.1 The Nature of Audio Processes
2(6)
1.1.1 Introducing Audio Processes
2(1)
1.1.2 Constructing an Audio Process
2(2)
1.1.3 Real-Time and Non-Real-Time Systems
4(1)
1.1.4 Audio Process Themes
5(3)
1.2 Example Audio Process Systems
8(9)
1.2.1 Playing an Acoustic Instrument
8(2)
1.2.2 Combining Two Paths
10(1)
1.2.3 Automated Analysis
11(2)
1.2.4 Two Humans Working Together
13(4)
Part I Analysis
Chapter 2 Audio Data Fundamentals
17(22)
2.1 The Nature of Sound
18(9)
2.1.1 Sound in the Time Domain
18(1)
2.1.2 Cycle Length, Frequency, and Amplitude
19(7)
2.1.3 Construction and Deconstruction with Sinusoids
26(1)
2.2 Sound as Numbers
27(12)
2.2.1 Overview
27(1)
2.2.2 Sampling Continuous Data
28(6)
2.2.3 A Complete Digital Audio System
34(1)
2.2.4 Choosing a Sample Rate
35(2)
2.2.5 Amplitude
37(2)
Chapter 3 Time Domain Analysis
39(34)
3.1 Basic Concepts
40(9)
3.1.1 Continuum of Sound Character
40(1)
3.1.2 Harmonic Sounds
41(4)
3.1.3 Inharmonic Sounds
45(2)
3.1.4 Phase Effects
47(2)
3.2 Dynamic Sound Character
49(21)
3.2.1 Chime Bar
49(2)
3.2.2 Amplitude Envelopes
51(9)
3.2.3 Dynamic Waveform Changes
60(1)
3.2.4 Oboe
61(2)
3.2.5 Vibraphone
63(3)
3.2.6 Piano
66(1)
3.2.7 Tubular Bell
67(1)
3.2.8 Vocal "sh" and "f" Sounds
68(2)
3.3 Using Time Domain Information
70(2)
3.4 Learning More
72(1)
Chapter 4 Frequency Domain Analysis
73(28)
4.1 Introduction
74(1)
4.2 Static and Average Sound Character
74(15)
4.2.1 Spectral Form
74(5)
4.2.2 Frequency Domain Analysis of Simple Waveform Shapes
79(5)
4.2.3 Average Spectrum Analysis Examples
84(5)
4.3 Dynamic Sound Character
89(7)
4.3.1 Representing Three Dimensions
89(1)
4.3.2 Simple Spectrogram Examples
90(4)
4.3.3 More Complex Spectrogram Examples
94(2)
4.4 Using Frequency Domain Information
96(2)
4.5 Learning More
98(3)
Part II Modification
Chapter 5 Basic Modifications
101(38)
5.1 Introduction
102(1)
5.2 Signal Flow Control
102(3)
5.3 Amplitude Control
105(9)
5.3.1 Simple Amplitude Control
105(3)
5.3.2 Two Channel Amplitude Control
108(1)
5.3.3 Naturalistic Amplitude Control
109(4)
5.3.4 Working with Decibels
113(1)
5.4 Mixing
114(3)
5.5 Pan Control and Stereo Balance
117(10)
5.5.1 Monophonic and Stereophonic Signals
117(4)
5.5.2 Panning
121(4)
5.5.3 Stereo Balance
125(2)
5.6 Combination of Elements
127(10)
5.6.1 Ordering
127(2)
5.6.2 Series and Parallel Forms
129(4)
5.6.3 Practical Combination Examples
133(4)
5.7 Developing Processes and Learning More
137(2)
Chapter 6 Filtering
139(56)
6.1 Introduction
140(8)
6.1.1 Filters and Audio Processes
140(1)
6.1.2 Filtering and Acoustic Sound Sources
140(1)
6.1.3 Musical Frequency Ranges
141(2)
6.1.4 Frequency (Magnitude) Responses
143(5)
6.2 Standard Filters
148(7)
6.2.1 Lowpass and Highpass Filters
148(1)
6.2.2 Bandpass and Bandreject Filters
149(3)
6.2.3 Comb and Allpass Filters
152(1)
6.2.4 Variations in Filter Responses
153(2)
6.3 Filter Combinations
155(9)
6.3.1 Common Series and Parallel Forms
155(4)
6.3.2 Subtractive Techniques
159(5)
6.4 Filter Designs
164(29)
6.4.1 Introduction
164(7)
6.4.2 Lowpass and Highpass Designs
171(9)
6.4.3 Bandpass and Bandreject Designs
180(3)
6.4.4 Comb and Allpass Designs
183(10)
6.5 Developing Processes and Learning More
193(2)
Chapter 7 Distortion
195(24)
7.1 Introduction
196(4)
7.1.1 Avoiding and Creating Distortion
196(1)
7.1.2 Hard Clipping
196(4)
7.2 Distortion Functions
200(13)
7.2.1 Soft Clipping Distortion
200(8)
7.2.2 Other Distortion Transfer Functions
208(1)
7.2.3 Controlling Distortion Character
208(5)
7.3 Distortion of Complex Signals
213(3)
7.4 Developing Processes and Learning More
216(3)
Chapter 8 Audio Data Techniques
219(46)
8.1 Storing and Accessing Audio Data
220(17)
8.1.1 Storage and Processing Requirements
220(1)
8.1.2 Simple Buffering
221(4)
8.1.3 Shift Registers and Circular Buffers
225(7)
8.1.4 Delayed Sound
232(3)
8.1.5 Pointer Position Considerations
235(2)
8.2 Selecting and Interpolating Values
237(8)
8.2.1 Introduction
237(2)
8.2.2 Truncation and Rounding
239(2)
8.2.3 Linear Interpolation
241(1)
8.2.4 Non-linear Interpolation
242(3)
8.3 Level Measurement
245(16)
8.3.1 Introduction
245(2)
8.3.2 Accurate Peak Measurement
247(2)
8.3.3 Accurate RMS Measurement
249(3)
8.3.4 Filter-Based Techniques
252(3)
8.3.5 Ramping Techniques
255(5)
8.3.6 Selecting and Configuring Envelope Followers
260(1)
8.4 Developing Processes and Learning More
261(4)
Chapter 9 Modulated Modifiers
265(24)
9.1 Introduction
266(4)
9.1.1 Variation over Time
266(1)
9.1.2 Oscillators
267(3)
9.2 Examples of Periodic Modulation
270(16)
9.2.1 Tremolo and Autopan
270(7)
9.2.2 Filter Modulation
277(1)
9.2.3 Vibrato
278(1)
9.2.4 Flanger and Phaser
279(4)
9.2.5 Chorus
283(1)
9.2.6 Modulated Modulators
284(2)
9.3 Developing Processes and Learning More
286(3)
Chapter 10 Acoustic Environment
289(48)
10.1 Basic Concepts
290(7)
10.1.1 Types of Environmental Effects
290(1)
10.1.2 Fundamentals of Sound in Enclosed Spaces
291(3)
10.1.3 Practical Enclosed Spaces
294(3)
10.2 Non-Recirculating Echo and Reverberation Forms
297(16)
10.2.1 A Simple Model
297(1)
10.2.2 Echo Effects
298(5)
10.2.3 Multitap Implementation
303(4)
10.2.4 Improvements to Echo Effects
307(2)
10.2.5 Reverberation Effects
309(1)
10.2.6 Convolution with Impulse Responses
310(3)
10.3 Recirculating Echo Forms
313(10)
10.3.1 Basic Concepts
313(2)
10.3.2 Echo Effects
315(7)
10.3.3 Improvements to Echo Effects
322(1)
10.4 Recirculating Reverberation Forms
323(12)
10.4.1 Basic Concepts
323(1)
10.4.2 Reverberator with Comb and Allpass Filters
324(2)
10.4.3 Multi-Stage Reverberator
326(5)
10.4.4 Improvements to the Multi-Stage Reverberator
331(2)
10.4.5 Stereo Reverberation
333(2)
10.5 Developing Processes and Learning More
335(2)
Chapter 11 Dynamics Processes
337(32)
11.1 Introduction
338(3)
11.1.1 Manual and Automated Control Loops
338(1)
11.1.2 Amplitude Dynamics
339(1)
11.1.3 Basic Forms
340(1)
11.2 Noise Gates
341(12)
11.2.1 Main Principles
341(4)
11.2.2 Simple Form
345(2)
11.2.3 Improvements to the Simple Form
347(4)
11.2.4 Additional Techniques
351(2)
11.3 Compressors
353(9)
11.3.1 Main Principles
353(6)
11.3.2 Compressor Form
359(3)
11.4 Further Techniques
362(5)
11.4.1 Expanders
362(2)
11.4.2 Sidechain Filtering
364(1)
11.4.3 Combinations
365(1)
11.4.4 Other Modifications
366(1)
11.5 Developing Processes and Learning More
367(2)
Chapter 12 Frequency Domain Methods
369(26)
12.1 Time Domain and Frequency Domain Processes
370(7)
12.1.1 Introduction
370(1)
12.1.2 Fourier Transform Basics
371(6)
12.2 General Techniques
377(5)
12.2.1 Filtering
377(2)
12.2.2 Vocoding and Application of Spectral Envelopes
379(2)
12.2.3 Delay
381(1)
12.3 More Sophisticated Techniques
382(8)
12.3.1 Time-Stretching
383(1)
12.3.2 Changing Pitch
383(4)
12.3.3 Modifying Amplitude and Frequency Relationships
387(2)
12.3.4 Blending and Morphing
389(1)
12.4 Developing Processes and Learning More
390(5)
Part III Synthesis
Chapter 13 Basic Synthesis
395(28)
13.1 Basic Concepts
396(10)
13.1.1 From Modifiers to Synthesizers
396(2)
13.1.2 Oscillators
398(1)
13.1.3 Note Numbers and Frequency Values
399(3)
13.1.4 Parameter Variation
402(4)
13.2 Gate and Envelope Methods
406(12)
13.2.1 Basic Methods
406(2)
13.2.2 Envelope Shapes and Applications
408(6)
13.2.3 Audio Input Methods
414(4)
13.3 Tremolo and Vibrato in Synthesis
418(3)
13.4 Developing Processes and Learning More
421(2)
Chapter 14 Signal Generators and Shaping
423(38)
14.1 Introduction
424(1)
14.2 Equation-Based Methods
425(4)
14.2.1 Basic Concepts
425(2)
14.2.2 Example Equations
427(2)
14.3 Breakpoint Methods
429(15)
14.3.1 Basic Concepts
429(2)
14.3.2 Generating a Single Linear Segment
431(3)
14.3.3 Generating Multiple Segments
434(8)
14.3.4 Mapping with Multiple Breakpoints
442(2)
14.4 Wavetable Methods
444(5)
14.4.1 Creating a Wavetable
444(1)
14.4.2 Using a Wavetable
445(2)
14.4.3 Efficiency and Control
447(2)
14.5 Modifying and Shaping Oscillation
449(10)
14.5.1 Bandlimiting and Aliasing
449(2)
14.5.2 Developing Oscillator Character
451(1)
14.5.3 Waveshaping
452(7)
14.6 Developing Processes and Learning More
459(2)
Chapter 15 Sample-Based Synthesis Methods
461(20)
15.1 Basic Concepts
462(4)
15.1.1 Using Sampled Sound
462(1)
15.1.2 Recording, Editing, and Organising Samples
463(2)
15.1.3 Sample Playback
465(1)
15.2 Position Control and Concatenation
466(7)
15.2.1 Position Control and Looping
466(3)
15.2.2 Concatenation
469(1)
15.2.3 Process Considerations
470(3)
15.3 Manipulating Sample Data Values
473(6)
15.3.1 Sample Increment Effects
473(5)
15.3.2 Further Methods
478(1)
15.4 Developing Processes and Learning More
479(2)
Chapter 16 Additive Synthesis
481(20)
16.1 Basic Concepts
482(3)
16.1.1 Additive Synthesis Characteristics
482(1)
16.1.2 Frequency Separation
483(2)
16.2 Synthesis with Control over Individual Partials
485(11)
16.2.1 Synthesizer Form
485(2)
16.2.2 Configuration from Theory
487(4)
16.2.3 Configuration from Sound Analysis
491(3)
16.2.4 Abstract Configuration
494(2)
16.3 Synthesis with Mapped Control over Multiple Partials
496(3)
16.4 Developing Processes and Learning More
499(2)
Chapter 17 Subtractive Synthesis
501(22)
17.1 Basic Concepts
502(1)
17.2 Common Subtractive Methods
503(6)
17.2.1 Source Selection
503(1)
17.2.2 Filtering Methods
504(5)
17.3 Vocal Synthesis
509(8)
17.3.1 Introduction
509(1)
17.3.2 Voiced Source Sound Generation
510(4)
17.3.3 Formant Filtering
514(3)
17.4 High Resonance Methods
517(4)
17.5 Developing Processes and Learning More
521(2)
Chapter 18 Noise in Synthesis
523(20)
18.1 Consistent and Inconsistent Signals
524(1)
18.2 Noise in the Time Domain
525(7)
18.2.1 Generation and Shaping
525(4)
18.2.2 Rate-Controlled Random Value Generation
529(1)
18.2.3 Inconsistent Oscillation
529(3)
18.3 Noise in the Frequency Domain
532(10)
18.3.1 Spectral Envelopes
532(1)
18.3.2 Rate Control and Modulation
533(2)
18.3.3 Filtering
535(2)
18.3.4 Applications
537(5)
18.4 Developing Processes and Learning More
542(1)
Chapter 19 Blending Synthesized Sounds
543(16)
19.1 Basic Concepts
544(2)
19.2 Fixed Parameter Blends
546(4)
19.2.1 Static Blend
546(3)
19.2.2 Enhancements to Static Blend
549(1)
19.3 Envelope-Controlled Blends
550(3)
19.4 Cross-Fading
553(4)
19.4.1 Two Signal Cross-Fade
553(2)
19.4.2 Four Signal Cross-Fade
555(1)
19.4.3 Eight Signal Cross-Fade
556(1)
19.5 Developing Processes and Learning More
557(2)
Chapter 20 Modulation for Synthesis
559(20)
20.1 Introduction
560(1)
20.2 Amplitude Modulation
561(6)
20.2.1 Basic Principles
561(4)
20.2.2 Practical Examples
565(2)
20.3 Frequency Modulation
567(8)
20.3.1 Basic Principles
567(4)
20.3.2 Parallel FM
571(2)
20.3.3 Multiple Modulator FM Arrangements
573(2)
20.4 Further Modulation Methods
575(2)
20.5 Developing Processes and Learning More
577(2)
Chapter 21 Waveguide Physical Models
579(30)
21.1 Introduction
580(4)
21.1.1 Basic Concepts
580(1)
21.1.2 Structure of a Physical Model
581(1)
21.1.3 Waveguides
582(2)
21.2 Waveguide Plucked String
584(9)
21.2.1 Simplest Plucked String
584(4)
21.2.2 Body Resonances
588(1)
21.2.3 Modifying the Excitation
588(4)
21.2.4 Modifying the Waveguide Filtering
592(1)
21.3 Waveguides for Percussion
593(6)
21.3.1 Banded Waveguides
593(2)
21.3.2 Waveguide Mesh Drum
595(4)
21.4 Waveguide Wind Instrument
599(5)
21.4.1 Basic Wind Instrument
599(3)
21.4.2 Breath Input Improvements
602(1)
21.4.3 Filtering and Tuning Improvements
603(1)
21.5 Bowed Waveguides
604(2)
21.6 Developing Processes and Learning More
606(3)
Chapter 22 Granular Synthesis
609(22)
22.1 Sound from Grains
610(7)
22.1.1 Introduction
610(1)
22.1.2 Granular Stream Generation
610(5)
22.1.3 Lookup Table Sources
615(1)
22.1.4 Parameter Relationships
615(2)
22.2 Granular Synthesis Techniques
617(9)
22.2.1 Fixed Parameters
617(3)
22.2.2 Envelope Control
620(3)
22.2.3 Random Variations
623(1)
22.2.4 Parallel Streams
624(2)
22.3 Developing Processes and Learning More
626(5)
Part IV Control
Chapter 23 Process Organisation and Control
631(24)
23.1 Components of Organisation and Control
632(12)
23.1.1 Introduction
632(1)
23.1.2 Process Segmentation
633(4)
23.1.3 Processing at Different Rates
637(4)
23.1.4 Control Inputs and Mapping
641(3)
23.2 Controlling Synthesis
644(9)
23.2.1 Introduction
644(1)
23.2.2 Polyphonic Methods
645(5)
23.2.3 Monophonic Methods
650(3)
23.3 Developing Processes and Learning More
653(2)
Chapter 24 Control Mapping
655(22)
24.1 Frequency and Amplitude
656(9)
24.1.1 Frequency Control
656(2)
24.1.2 Amplitude Gain Control
658(3)
24.1.3 Key Velocity to Amplitude Gain
661(1)
24.1.4 Further Mapping Considerations
662(3)
24.2 More Sophisticated Techniques
665(4)
24.2.1 Mapping to Varying Parameters
665(2)
24.2.2 Mapping to Multiple Parameters
667(2)
24.3 Developing Processes and Learning More
669(2)
Next Steps 671(6)
Appendices
Appendix A Mathematics for Audio Processes
677(28)
A.1 The Need for Mathematics
678(1)
A.2 Variables, Simple Equations, Subscripts, Superscripts
679(5)
A.3 Repeated Summation
684(1)
A.4 Linear Mapping
685(4)
A.5 Straight Lines
689(2)
A.6 Logarithmic and Exponential Functions
691(6)
A.7 Mapping and Shaping Functions
697(1)
A.8 Units, Prefixes, and Symbols
698(1)
A.9 Accuracy
699(4)
A.10 Answers to Problems
703(2)
Appendix B Windowing and Window Functions
705(10)
B.1 Introduction
706(4)
B.2 Some Common Window Functions
710(3)
B.3 Learning More
713(2)
Appendix C Block Diagram Techniques
715(6)
C.1 Detail and Clarity
716(2)
C.2 Relating Diagrams and Programming Forms
718(3)
Index 721
Dr David Creasey is a Senior Lecturer in Music Technology at the University of the West of England, Bristol. He has taught audio process design and implementation for more than a decade, utilising a number of different programming languages and environments. He previously worked as a software developer, and has been creating electronic circuits and software for audio for more than twenty-five years.