Muutke küpsiste eelistusi

E-raamat: Automated Electronic Filter Design: With Emphasis on Distributed Filters

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 29-Aug-2017
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319615547
  • Formaat - EPUB+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 29-Aug-2017
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319615547

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book describes a novel, efficient and powerful scheme for designing and evaluating the performance characteristics of any electronic filter designed with predefined specifications. The author explains techniques that enable readers to eliminate complicated manual, and thus error-prone and time-consuming, steps of traditional design techniques. The presentation includes demonstration of efficient automation, using an ANSI C language program, which accepts any filter design specification (e.g. Chebyschev low-pass filter, cut-off frequency, pass-band ripple etc.) as input and generates as output a SPICE(Simulation Program with Integrated Circuit Emphasis) format netlist. Readers then can use this netlist to run simulations with any version of the popular SPICE simulator, increasing accuracy of the final results, without violating any of the key principles of the traditional design scheme.

1 Introduction and Problem Statement
1(4)
References
3(2)
2 Automated Electronic Filter Design Scheme
5(20)
2.1 The Framework
5(2)
2.2 Normalized Butterworth Filter
7(2)
2.3 Practical Normalized Low Pass Butterworth Filter
9(1)
2.4 Normalized Chebyschev Low Pass Filter
10(3)
2.5 Normalized Inverse Chebyschev Filter
13(1)
2.6 Normalized Bessel Filter
14(1)
2.7 Denormalizing Prototype Filters to Real World Filters
15(2)
Frequency Scaling
15(1)
Impedance Scaling
16(1)
2.8 Filter Transformations
17(2)
Low Pass to High Pass Filter
17(1)
Low Pass Filter to Band Pass Filter
18(1)
2.9 Automated Filter Design Scheme
19(1)
2.10 Low Pass to Band Pass Filter Conversion Example
20(5)
References
23(2)
3 Automated Electronic Filter Design Scheme Implementation and Design Examples
25(32)
3.1 Introduction
25(1)
3.2 Automated Electronic Filter Design Scheme
25(9)
3.3 Designing Filters with New Scheme
34(1)
3.4 Seventh Order Low Pass Butterworth Filter: Simplified Scheme Implementation
35(2)
3.5 Eighth Order High Pass Bessel Filter: Simplified Scheme Implementation
37(2)
3.6 Eighth Order Band Pass Chebyschev Filter: Simplified Scheme Implementation
39(4)
3.7 Designing Filters with New Scheme: Full Blown Implementation
43(2)
3.8 Chebyschev High Pass Filter: Calculated Order 3 Cut Off Frequency 21 MHz Pass Band Ripple 0.45 dB
45(1)
3.9 Chebyschev Band Pass Filter: Series Connection of High Pass and Low Pass Filters
46(5)
3.10 Effect of Non-ideal Reactive Elements on Filter Behavior and Performance and Design Space Exploration
51(4)
3.11 SPICE: Electronic Circuit Performance Evaluation Gold Standard
55(2)
References
56(1)
4 Distributed Electronic Filter Design Foundations
57(40)
4.1 Basic Transmission Line
57(1)
4.2 TEM, TE and TM Propagation Modes
58(1)
4.3 Equivalent Current-Voltage, Network Concepts, Admittance [ Y], Impedance [ Z], Scattering [ S] and ABCD Matrices
58(5)
4.4 Microstrip Transmission Line and Intrinsic Properties
63(4)
Simple Microstrip Model
63(3)
Advanced Microstrip Model - Hammarstadt and Jansen, Kirschning and Jensen
66(1)
4.5 Special Microstrip Structures: Half/Quarter Wave Plates and Microstrip Discontinuities
67(5)
Shorted Lambda by Two Microstrip Lines
67(1)
Shorted Lambda by Four Microstrip Lines
68(1)
Open Circuited Lambda by Two Microstrip Lines
68(1)
Microstrip Discontinuity - Abrupt End
69(1)
Microstrip Discontinuity - Gap
70(1)
Microstrip Discontinuity - Step Impedance
71(1)
4.6 Special Microstrip Structures Coupled Parallel Microstrips
72(5)
Simple Parallel Microstrip Model
72(2)
Detailed Parallel Microstrip Model - Hammarstadt and Jensen, Kirschning and Jensen
74(3)
4.7 Microstrip Periodic Structures
77(2)
4.8 Image Networks and Impedances
79(1)
4.9 Insertion Loss Scheme for Electronic Filter Design
80(1)
4.10 Coupled Parallel Microstrip Pairs, Even/Odd Mode Impedance and Filter Properties
80(7)
4.11 Microstrip Band Pass Filter Using Capacitively Coupled Microstrip Resonators
87(4)
Cohn Inverters and Coupled Resonators
87(2)
Capacitively Coupled Microstrip Band Pass Filters
89(2)
4.12 Capacitively Coupled Shunt Resonator Band Pass Filter
91(2)
4.13 Stepped Impedance Low Pass Filter
93(4)
References
94(3)
5 Automated Distributed Electronic Filter Design and SPICE Performance Analysis
97(24)
5.1 Why Automate - Kirschning and Jensen Model
97(3)
5.2 Fourth Order Butterworth Coupled Parallel Microstrip Band Pass Filter Design and SPICE Performance Analysis
100(6)
5.3 Cohn Direct Coupled Third Order 750 MHz Center Frequency 100 MHz Bandwidth Band Pass Filter
106(3)
5.4 Fifth Order 0.5 dB Pass Band Ripple Chebyschev Band Pass Filter Using End Capacitively Coupled Resonators (Microstrips)
109(5)
5.5 Capacitively Coupled Shunt Resonator Seventh Order Chebyschev Band Pass Filter Design
114(1)
5.6 5.75 GHz Cut Off 0.5 dB Pass Band Ripple Stepped Impedance Chebyschev Seventh Order Low Pass Filter and SPICE Performance Analysis
115(6)
References
119(2)
6 Conclusion
121(2)
Appendix A Using the Automated Filter Design Tool 123(2)
Appendix B Richard's Transformation and Kuroda's Identities 125(2)
Index 127
Amal Banerjee is an Engineering manager at Analog Electronics in Kolkata, India.