Muutke küpsiste eelistusi

E-raamat: Automated Taxon Identification in Systematics: Theory, Approaches and Applications

Edited by (Cathay Pacific Airways, Hong Kong, China)
  • Formaat: 368 pages
  • Ilmumisaeg: 23-Jul-2007
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781040200773
  • Formaat - EPUB+DRM
  • Hind: 80,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 368 pages
  • Ilmumisaeg: 23-Jul-2007
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781040200773

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The automated identification of biological objects or groups has been a dream among taxonomists and systematists for centuries. However, progress in designing and implementing practical systems for fully automated taxon identification has been frustratingly slow. Regardless, the dream has never died. Recent developments in computer architectures and innovations in software design have placed the tools needed to realize this vision in the hands of the systematics community, not several years hence, but now. And not just for DNA barcodes or other molecular data, but for digital images of organisms, digital sounds, digitized chemical data - essentially any type of digital data.

Based on evidence accumulated over the last decade and written by applied researchers, Automated Taxon Identification in Systematics explores contemporary applications of quantitative approaches to the problem of taxon recognition. The book begins by reviewing the current state of systematics and placing automated taxon identification in the context of contemporary trends, needs, and opportunities. The chapters present and evaluate different aspects of current automated system designs. They then provide descriptions of case studies in which different theoretical and practical aspects of the overall group-identification problem are identified, analyzed, and discussed.

A recurring theme through the chapters is the relationship between taxonomic identification, automated group identification, and morphometrics. This collection provides a bridge between these communities and between them and the wider world of applied taxonomy. The only book-length treatment that explores automated group identification in systematic context, this text also includes introductions to basic aspects of the fields of contemporary artificial intelligence and mathematical group recognition for the entire biological community.
Introduction
1(8)
Norman MacLeod
Digital Innovation and Taxonomy's Finest Hour
9(16)
Quentin D. Wheeler
Natural Object Categorization: Man versus Machine
25(22)
Philip F. Culverhouse
Neural Networks in Brief
47(22)
Robert Lang
Morphometrics and Computed Homology: An Old Theme Revisited
69(14)
Fred L. Bookstein
The Automated Identification of Taxa: Concepts and Applications
83(18)
David Chesmore
DAISY: A Practical Computer-Based Tool for Semi-Automated Species Identification
101(14)
Mark A. O'Neill
Automated Extraction and Analysis of Morphological Features for Species Identification
115(16)
Volker Steinhage
Stefan Schroder
Karl-Heinz Lampe
Armin B. Cremers
Introducing SPIDA-Web: Wavelets, Neural Networks and Internet Accessibility in an Image-Based Automated Identification System
131(22)
Kimberly N. Russell
Martin T. Do
Jeremy C. Huff
Norman I. Platnick
Automated Tools for the Identification of Taxa from Morphological Data: Face Recognition in Wasps
153(36)
Norman MacLeod
Mark A. O'Neill
Stig A. Walsh
Pattern Recognition for Ecological Science and Environmental Monitoring: An Initial Report
189(18)
Eric N. Mortensen
Enrique L. Delgado
Hongli Deng
David Lytle
Andrew Moldenke
Robert Paasch
Linda Shapiro
Pengcheng Wu
Wei Zhang
Thomas G. Dietterich
Plant Identification from Characters and Measurements Using Artificial Neural Networks
207(18)
Jonathan Y. Clark
Spot the Penguin: Can Reliable Taxonomic Identifications Be Made Using Isolated Foot Bones?
225(14)
Stig A. Walsh
Norman MacLeod
Mark A. O'Neill
A New Semi-Automatic Morphometric Protocol for Conodonts and a Preliminary Taxonomic Application
239(22)
David Jones
Mark Purnell
Decision Trees: A Machine-Learning Method for Characterizing Morphological Patterns Resulting from Ecological Adaptation
261(16)
Manuel Mendoza
Data Integration and Multifactorial Analyses: The Yeasts and the BioloMICS Software as a Case Study
277(12)
Robert Vincent
Automatic Measurement of Honeybee Wings
289(10)
Adam Tofilski
Good Performers Know Their Audience! Identification and Characterization of Pitch Contours in Infant- and Foreigner-Directed Speech
299(12)
Monja A. Knoll
Stig A. Walsh
Norman MacLeod
Mark A. O'Neill
Maria Uther
Appendix 311(18)
Subject Index 329(8)
Taxon Index 337


Norman MacLeod