Muutke küpsiste eelistusi

E-raamat: Automatic Defense Against Zero-day Polymorphic Worms in Communication Networks

(International Islamic University Malaysia, Kuala Lumpur), (Al-Imam Muhammad Ibn Saud University, Saudi Arabia)
  • Formaat: 337 pages
  • Ilmumisaeg: 19-Apr-2016
  • Kirjastus: Auerbach
  • Keel: eng
  • ISBN-13: 9781466557284
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 74,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 337 pages
  • Ilmumisaeg: 19-Apr-2016
  • Kirjastus: Auerbach
  • Keel: eng
  • ISBN-13: 9781466557284
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Able to propagate quickly and change their payload with each infection, polymorphic worms have been able to evade even the most advanced intrusion detection systems (IDS). And, because zero-day worms require only seconds to launch flooding attacks on your servers, using traditional methods such as manually creating and storing signatures to defend against these threats is just too slow.

Bringing together critical knowledge and research on the subject, Automatic Defense Against Zero-day Polymorphic Worms in Communication Networks details a new approach for generating automated signatures for unknown polymorphic worms. It presents experimental results on a new method for polymorphic worm detection and examines experimental implementation of signature-generation algorithms and double-honeynet systems.

If you need some background, the book includes an overview of the fundamental terms and concepts in network security, including the various security models. Clearing up the misconceptions about the value of honeypots, it explains how they can be useful in securing your networks, and identifies open-source tools you can use to create your own honeypot. Theres also a chapter with references to helpful reading resources on automated signature generation systems.

The authors describe cutting-edge attack detection approaches and detail new algorithms to help you generate your own automated signatures for polymorphic worms. Explaining how to test the quality of your generated signatures, the text will help you develop the understanding required to effectively protect your communication networks. Coverage includes intrusion detection and prevention systems (IDPS), zero-day polymorphic worm collection methods, double-honeynet system configurations, and the implementation of double-honeynet architectures.
Preface xiii
About The Authors xvii
Chapter 1 The Fundamental Concepts 1(24)
1.1 Introduction
1(21)
1.1.1 Network Security Concepts
1(19)
1.1.2 Automated Signature Generation for Zero-day Polymorphic Worms
20(2)
1.2 Our Experience and This Book's Objective
22(1)
References
23(2)
Chapter 2 Computer Networking 25(22)
2.1 Computer Technologies
25(1)
2.2 Network Topology
26(8)
2.2.1 Point-to-Point Topology
26(1)
2.2.2 Daisy-Chain Topology
27(1)
2.2.3 Bus (Point-to-Multipoint) Topology
27(1)
2.2.4 Distributed Bus Topology
27(2)
2.2.5 Ring Topology
29(1)
2.2.6 Dual-Ring Topology
29(1)
2.2.7 Star Topology
29(1)
2.2.8 Star-Wired Bus Topology
30(1)
2.2.9 Star-Wired Ring Topology
31(1)
2.2.10 Mesh Topology
32(1)
2.2.11 Hierarchical or Tree Topology
32(1)
2.2.12 Dual-Homing Topology
32(2)
2.3 Internet Protocol
34(1)
2.4 Transmission Control Protocol
34(1)
2.5 IP Routers
35(1)
2.6 Ethernet Switch
35(1)
2.7 IP Routing and Routing Table
36(1)
2.8 Discussion on Router
37(5)
2.8.1 Access Mechanisms for Administrators
37(1)
2.8.2 Security Policy for a Router
38(2)
2.8.3 Router Security Policy Checklist
40(2)
2.9 Network Traffic Filtering
42(1)
2.9.1 Packet Filtering
42(1)
2.9.2 Source Routing
43(1)
2.10 Tools Used for Traffic Filtering or Network Monitoring
43(1)
2.10.1 Packet Capture
44(1)
2.11 Concluding Remarks
44(1)
References
45(2)
Chapter 3 Intrusion Detection And Prevention Systems (IDPSs) 47(38)
3.1 Introduction
47(7)
3.2 IDPS Detection Methods
54(5)
3.2.1 Signature-Based Detection
54(1)
3.2.2 Anomaly-Based Detection
55(2)
3.2.3 Stateful Protocol Analysis
57(2)
3.3 IDPS Components
59(1)
3.4 IDPS Security Capabilities
60(1)
3.5 Types of IDPS Technologies
61(16)
3.5.1 Network-Based IDPSs
62(4)
3.5.2 Wireless IDPSs
66(4)
3.5.3 NBA Systems
70(3)
3.5.4 Host-Based IDPS
73(4)
3.6 Integration of Multiple IDPSs
77(1)
3.6.1 Multiple IDPS Technologies
77(1)
3.6.2 Integration of Different IDPS Products
78(1)
3.7 IDPS Products
78(5)
3.7.1 Common Enterprise Network-Based IDPSs
78(1)
3.7.2 Common Enterprise Wireless IDPSs
78(1)
3.7.3 Common Enterprise NBA Systems
78(1)
3.7.4 Common Enterprise Host-Based IDPSs
78(5)
3.8 Concluding Remarks
83(1)
References
83(2)
Chapter 4 Honeypots 85(42)
4.1 Definition and History of Honeypots
85(11)
4.1.1 Honeypot and Its Working Principle
85(4)
4.1.2 History of Honeypots
89(6)
4.1.3 Types of Honeypots
95(1)
4.2 Types of Threats
96(5)
4.2.1 Script Kiddies and Advanced Blackhat Attacks
96(4)
4.2.2 Attackers' Motivations
100(1)
4.3 The Value of Honeypots
101(8)
4.3.1 Advantages of Honeypots
101(3)
4.3.2 Disadvantages of Honeypots
104(1)
4.3.3 Roles of Honeypots in Network Security
105(4)
4.4 Honeypot Types Based on Interaction Level
109(4)
4.4.1 Low-Interaction Honeypots
110(1)
4.4.2 High-Interaction Honeypots
111(1)
4.4.3 Medium-Interaction Honeypots
112(1)
4.5 An Overview of Five Honeypots
113(10)
4.5.1 BackOfficer Friendly
113(1)
4.5.2 Specter
113(1)
4.5.3 Honeyd
114(1)
4.5.4 ManTrap
114(1)
4.5.5 Honeynets
115(8)
4.6 Conclusion
123(1)
References
124(3)
Chapter 5 Internet Worms 127(32)
5.1 Introduction
127(1)
5.2 Infection
127(7)
5.2.1 Code Injection
128(2)
5.2.2 Edge Injection
130(3)
5.2.3 Data Injection
133(1)
5.3 Spreading
134(2)
5.4 Hiding
136(3)
5.4.1 Traffic Shaping
136(1)
5.4.2 Polymorphism
137(1)
5.4.3 Fingerprinting
138(1)
5.5 Worm Components
139(1)
5.5.1 Reconnaissance
139(1)
5.5.2 Attack Components
139(1)
5.5.3 Communication Components
139(1)
5.5.4 Command Components
140(1)
5.5.5 Intelligence Capabilities
140(1)
5.6 Worm Life
140(3)
5.6.1 Random Scanning
141(1)
5.6.2 Random Scanning Using Lists
142(1)
5.6.3 Island Hopping
142(1)
5.6.4 Directed Attacking
142(1)
5.6.5 Hit-List Scanning
143(1)
5.7 Polymorphic Worms: Definition and Anatomy
143(6)
5.7.1 Polymorphic Worm Definition
143(1)
5.7.2 Polymorphic Worm Structure
143(1)
5.7.3 Invariant Bytes
144(1)
5.7.4 Polymorphic Worm Techniques
144(4)
5.7.5 Signature Classes for Polymorphic Worms
148(1)
5.8 Internet Worm Prevention Methods
149(3)
5.8.1 Prevention of Vulnerabilities
149(2)
5.8.2 Prevention of Exploits
151(1)
5.9 Conclusion
152(1)
References
153(6)
Chapter 6 Reading Resources On Automated Signature Generation Systems 159(10)
6.1 Introduction
159(6)
6.1.1 Hybrid System (Network Based and Host Based)
160(1)
6.1.2 Network-Based Mechanisms
161(3)
6.1.3 Host-Based Mechanisms
164(1)
References
165(4)
Chapter 7 Signature Generation Algorithms For Polymorphic Worms 169(92)
7.1 String Matching
169(16)
7.1.1 Exact String-Matching Algorithms
170(9)
7.1.2 Approximate String-Matching Algorithms
179(6)
7.2 Machine Learning
185(27)
7.2.1 Supervised Learning
185(4)
7.2.2 Algorithm Selection
189(2)
7.2.3 Logic-Based Algorithms
191(4)
7.2.4 Learning Set of Rules
195(7)
7.2.5 Statistical Learning Algorithms
202(6)
7.2.6 Support Vector Machines
208(4)
7.3 Unsupervised Learning
212(42)
7.3.1 A Brief Introduction to Unsupervised Learning
212(7)
7.3.2 Dimensionality Reduction and Clustering Models
219(5)
7.3.3 Expectation-Maximization Algorithm
224(3)
7.3.4 Modeling Time Series and Other Structured Data
227(7)
7.3.5 Nonlinear, Factorial, and Hierarchical Models
234(1)
7.3.6 Intractability
235(1)
7.3.7 Graphical Models
236(5)
7.3.8 Exact Inference in Graphs
241(7)
7.3.9 Learning in Graphical Models
248(4)
7.3.10 Bayesian Model Comparison and Occam's Razor
252(2)
7.4 Concluding Remark
254(1)
References
254(7)
Chapter 8 Zero-Day Polymorphic Worm Collection Method 261(16)
8.1 Introduction
261(1)
8.2 Motivation for the Double-Honeynet System
261(1)
8.3 Double-Honeynet Architecture
262(2)
8.4 Software
264(2)
8.4.1 Honeywall Roo CD-ROM
264(1)
8.4.2 Sebek
265(1)
8.4.3 Snort_inline
265(1)
8.5 Double-Honeynet System Configurations
266(8)
8.5.1 Implementation of Double-Honeynet Architecture
266(1)
8.5.2 Double-Honeynet Configurations
267(7)
8.6
Chapter Summary
274(1)
References
274(3)
Chapter 9 Developed Signature Generation Algorithms 277(20)
9.1 Introduction
277(1)
9.2 An Overview and Motivation for Using String Matching
278(1)
9.3 The Knuth-Morris-Pratt Algorithm
279(4)
9.3.1 Proposed Substring Extraction Algorithm
280(2)
9.3.2 A Modified Knuth-Morris-Pratt Algorithm
282(1)
9.3.3 Testing the Quality of the Generated Signature for Polymorphic Worm A
282(1)
9.4 Modified Principal Component Analysis
283(4)
9.4.1 An Overview of and Motivation for Using PCA in Our Work
283(1)
9.4.2 Our Contributions in the PCA
283(1)
9.4.3 Determination of Frequency Counts
284(1)
9.4.4 Using PCA to Determine the Most Significant Data for Polymorphic Worm Instances
284(3)
9.4.5 Testing the Quality of the Generated Signature for Polymorphic Worm A
287(1)
9.5 Clustering Method for Different Types of Polymorphic Worms
287(1)
9.6 Signature Generation Algorithm Pseudocodes
288(7)
9.6.1 Signature Generation Process
288(6)
9.6.2 Testing the Quality of the Generated Signature for Polymorphic Worm A
294(1)
9.7
Chapter Summary
295(1)
9.8 Conclusion and Recommendations for Future Work
295(1)
References
296(1)
Index 297
Mohssen Mohammed received his B.Sc. (Honors) degree in Computer Science from Computer Man College for Computer Studies (Future University), Khartoum Sudan in 2003. In 2006, received the M.Sc. degree in Computer Science from the Faculty of Mathematical Sciences University of Khartoum, Sudan. In 2012 received Ph.D. degree in Electrical Engineering from Cape Town University, South Africa. He published several papers at top international conferences such as GLOBECOM and MILCOM. He has served as a Technical Program Committee member in numerous international conferences like ICSEA 2010, ICNS 2011. He got University of Cape Town prize for International Scholarship for Academic Merit (Years 2007, 2008, and 2009). From 2005 to 2012 he has been working as a permanent academic staff at the University of Juba, South of Sudan. Now he is working as Assistant Professor in the College of Computer Science & Information Technology, Bahri University, Khartoum Sudan. His research interest includes Network Security, especially Intrusion detection and prevention systems, Honeypots, Firewalls, and Malware Detection Methods.

Al-Sakib Khan Pathan received his Ph.D. degree in Computer Engineering in 2009 from Kyung Hee University, South Korea. He received B.Sc. degree in Computer Science and Information Technology from Islamic University of Technology (IUT), Bangladesh in 2003. He is currently an Assistant Professor at Computer Science department in International Islamic University Malaysia (IIUM), Malaysia. Till June 2010, he served as an Assistant Professor at Computer Science and Engineering department in BRAC University, Bangladesh. Prior to holding this position, he worked as a Researcher at Networking Lab, Kyung Hee University, South Korea till August 2009. His research interest includes wireless sensor networks, network security, and e-services technologies. He is a recipient of several awards/best paper awards and has several publications in