Muutke küpsiste eelistusi

E-raamat: Automorphic Forms and Galois Representations: Volume 1

Edited by (University of Oxford), Edited by (King's College London), Edited by (King's College London)
  • Formaat - PDF+DRM
  • Hind: 75,32 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This collection, the first of two volumes arising from an LMS-EPSRC Durham Symposium, explores the importance of automorphic forms and Galois representations in number theory. The expository articles and research papers within cover recent progress in anabelian geometry, p-adic Hodge theory, the Langlands program, and p-adic methods in number theory.

Automorphic forms and Galois representations have played a central role in the development of modern number theory, with the former coming to prominence via the celebrated Langlands program and Wiles' proof of Fermat's Last Theorem. This two-volume collection arose from the 94th LMS-EPSRC Durham Symposium on 'Automorphic Forms and Galois Representations' in July 2011, the aim of which was to explore recent developments in this area. The expository articles and research papers across the two volumes reflect recent interest in p-adic methods in number theory and representation theory, as well as recent progress on topics from anabelian geometry to p-adic Hodge theory and the Langlands program. The topics covered in volume one include the Shafarevich Conjecture, effective local Langlands correspondence, p-adic L-functions, the fundamental lemma, and other topics of contemporary interest.

Muu info

Part one of a two-volume collection exploring recent developments in number theory related to automorphic forms and Galois representations.
List of contributors
vi
Preface ix
1 A semi-stable case of the Shafarevich Conjecture
1(31)
Victor Abrashkin
2 Irreducible modular representations of the Borel subgroup of GL2(QP)
32(20)
Laurent Berger
Mathieu Vienney
3 p-adic L-functions and Euler systems: a tale in two trilogies
52(50)
Massimo Bertolini
Francesc Castella
Henri Darmon
Samit Dasgupta
Kartik Prasanna
Victor Rotger
4 Effective local Langlands correspondence
102(33)
Colin J. Bushnell
5 The conjectural connections between automorphic representations and Galois representations
135(53)
Kevin Buzzard
Toby Gee
6 Geometry of the fundamental lemma
188(33)
Pierre-Henri Chaudouard
7 The p-adic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings
221(65)
Gaetan Chenevier
8 La serie principale unitaire de GL2(QP): vecteurs localement analytiques
286(73)
Pierre Colmez
9 Equations differentielles p-adiques et modules de Jacquet analytiques
359
Gabriel Dospinescu
Minhyong Kim is a Professor of Number Theory at the University of Oxford. Fred Diamond is a Professor of Mathematics at King's College London. Payman Kassaei is an Associate Professor of Mathematics at McGill University, Montréal.