Muutke küpsiste eelistusi

E-raamat: Autonomous Bidding Agents – Strategies and Lessons from the Trading Agent Competition: Strategies and Lessons from the Trading Agent Competition

(University of Michigan), (Brown University), (University of Texas at Austin)
  • Formaat - PDF+DRM
  • Hind: 41,18 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

E-commerce increasingly provides opportunities for autonomous bidding agents: computer programs that bid in electronic markets without direct human intervention. Automated bidding strategies for an auction of a single good with a known valuation are fairly straightforward; designing strategies for simultaneous auctions with interdependent valuations is a more complex undertaking. This book presents algorithmic advances and strategy ideas within an integrated bidding agent architecture that have emerged from recent work in this fast-growing area of research in academia and industry.

The authors analyze several novel bidding approaches that developed from the Trading Agent Competition (TAC), held annually since 2000. The benchmark challenge for competing agents—to buy and sell multiple goods with interdependent valuations in simultaneous auctions of different types—encourages competitors to apply innovative techniques to a common task. The book traces the evolution of TAC and follows selected agents from conception through several competitions, presenting and analyzing detailed algorithms developed for autonomous bidding.

Autonomous Bidding Agents provides the first integrated treatment of methods in this rapidly developing domain of AI. The authors—who introduced TAC and created some of its most successful agents—offer both an overview of current research and new results.

Overview and analysis of algorithmic advances developed within an integrated bidding agent architecture that emerged from recent research in a growing domain of AI.
Preface ix
Introduction
1(8)
The TAC Travel-Shopping Game
9(24)
Bidding in Interdependent Markets
33(28)
Price Prediction
61(20)
Bidding with Price Predictions
81(36)
Machine Learning and Adaptivity
117(26)
Market-Specific Bidding Strategies
143(26)
Experimental Methods and Strategic Analysis
169(26)
Conclusion
195(10)
Appendix A: Tournament Data 205(14)
Appendix B: Integer Linear Programming Formulations 219(8)
References 227(6)
Citation Index 233(2)
Subject Index 235