Muutke küpsiste eelistusi

E-raamat: Autonomous Underwater Vehicles: Modeling, Control Design and Simulation

(New York Institute of Technology, Old Westbury, USA)
  • Formaat: 165 pages
  • Ilmumisaeg: 19-Dec-2017
  • Kirjastus: CRC Press Inc
  • ISBN-13: 9781351833929
  • Formaat - EPUB+DRM
  • Hind: 234,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 165 pages
  • Ilmumisaeg: 19-Dec-2017
  • Kirjastus: CRC Press Inc
  • ISBN-13: 9781351833929

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Underwater vehicles present some difficult and very particular control system design problems. These are often the result of nonlinear dynamics and uncertain models, as well as the presence of sometimes unforeseeable environmental disturbances that are difficult to measure or estimate.

Autonomous Underwater Vehicles: Modeling, Control Design, and Simulation outlines a novel approach to help readers develop models to simulate feedback controllers for motion planning and design. The book combines useful information on both kinematic and dynamic nonlinear feedback control models, providing simulation results and other essential information, giving readers a truly unique and all-encompassing new perspective on design.

Includes MATLAB® Simulations to Illustrate Concepts and Enhance Understanding

Starting with an introductory overview, the book offers examples of underwater vehicle construction, exploring kinematic fundamentals, problem formulation, and controllability, among other key topics. Particularly valuable to researchers is the books detailed coverage of mathematical analysis as it applies to controllability, motion planning, feedback, modeling, and other concepts involved in nonlinear control design. Throughout, the authors reinforce the implicit goal in underwater vehicle designto stabilize and make the vehicle follow a trajectory precisely.

Fundamentally nonlinear in nature, the dynamics of AUVs present a difficult control system design problem which cannot be easily accommodated by traditional linear design methodologies. The results presented here can be extended to obtain advanced control strategies and design schemes not only for autonomous underwater vehicles but also for other similar problems in the area of nonlinear control.
Preface xi
About the Authors xiii
Chapter 1 Introduction
1(28)
1.1 Overview
1(3)
1.2 Examples of Underwater Vehicle Construction
4(8)
1.2.1 Propeller Principle
6(1)
1.2.1.1 Wings
6(2)
1.2.1.2 Propellers
8(3)
1.2.2 Commercially Available Underwater Vehicles
11(1)
1.3 Vehicle Kinematics Fundamentals
12(11)
1.3.1 Frenet-Serret Equations for Cartan Moving Frame
12(6)
1.3.2 Mathematical Background for Rigid Motion in a Plane
18(1)
1.3.2.1 Rotation of a Vector
18(1)
1.3.2.2 Vector Represented in a Rotated Frame
19(1)
1.3.2.3 Representation of a Rotated Frame
19(1)
1.3.2.4 Group Representation
20(2)
1.3.2.5 Homogeneous Representation
22(1)
1.4 Lie Groups and Lie Algebras
23(6)
1.4.1 Matrix Groups
23(3)
1.4.2 Lie Groups
26(3)
Chapter 2 Problem Formulation and Examples
29(12)
2.1 Motion Planning of Nonholonomic Systems
29(1)
2.2 Nonholonomic Constraints
30(1)
2.3 Problem Description
31(2)
2.4 Control Model Formulation
33(1)
2.5 Controllability Issues
34(1)
2.6 Stabilization
35(3)
2.6.1 Controllability and Stabilization at a Point
35(1)
2.6.2 Controllability and Stabilization about Trajectory
36(1)
2.6.3 Approximate Linearization
36(1)
2.6.4 Exact Feedback Linearization
36(1)
2.6.5 Static Feedback Linearization
37(1)
2.6.6 Dynamic Feedback Linearization
37(1)
2.7 Examples of Nonholonomic Systems
38(3)
Chapter 3 Mathematical Modeling and Controllability Analysis
41(14)
3.1 Mathematical Modeling
41(5)
3.1.1 Kinematic Modeling and Nonholonomic Constraints
41(1)
3.1.2 Kinematic Model with Respect to Global Coordinates
42(4)
3.2 Controllability Analysis
46(4)
3.2.1 Controllability about a Point
46(2)
3.2.2 Controllability about a Trajectory
48(2)
3.3 Chained Forms
50(5)
Chapter 4 Control Design Using the Kinematic Model
55(62)
4.1 Trajectory Tracking and Controller Design for the Chained Form
55(1)
4.2 Reference Trajectory Generation
55(3)
4.3 Control Using Approximate Linearization
58(19)
4.3.1 Simulation of the Controller
61(7)
4.3.2 MATLAB® Program Code for the Approximate Linearization
68(9)
4.4 Control Using Exact Feedback Linearization via State and Input Transformations
77(21)
4.4.1 Control Using Exact Feedback Linearization via Static Feedback
78(1)
4.4.2 Control Using Exact Feedback Linearization via Dynamic Feedback
79(2)
4.4.3 Simulation of the Controller
81(7)
4.4.4 MATLAB Program Code for Dynamic Extension
88(10)
4.5 Point-to-Point Stabilization
98(19)
4.5.1 Control with Smooth Time-Varying Feedback
99(1)
4.5.2 Power Form
99(1)
4.5.3 Control Design with Smooth Time-Varying Feedback
100(1)
4.5.4 Simulation of the Controller
101(6)
4.5.5 MATLAB Program Code for Point Stabilization
107(10)
Chapter 5 Control Design Using the Dynamic Model
117(10)
5.1 Dynamic Modeling
117(1)
5.2 Point-to-Point Stabilization Control Design
118(9)
5.2.1 State Feedback Control Using Backstepping
119(1)
5.2.2 Control with Smooth Time-Varying Feedback
120(1)
5.2.3 Lyapunov Stability Analysis
121(1)
5.2.4 Control of the Dynamic Model
122(5)
Chapter 6 Robust Feedback Control Design
127(16)
6.1 Robust Control Using the Kinematic Model
127(6)
6.1.1 Input Uncertain Control Model
128(2)
6.1.2 Robust Control by the Lyapunov Redesign Method
130(3)
6.2 Robust Control Using the Dynamic Model
133(10)
6.2.1 Robust Backstepping: Unmatched Uncertainty
134(3)
6.2.2 Robust Control: Matched Uncertainty
137(3)
6.2.3 Robust Control: Both Matched and Unmatched Uncertainties
140(3)
References 143(2)
Index 145
Sabiha Wadoo, Ph.D, received a BE degree in electrical engineering from the Regional Engineering College, Kashmir, India, in 2001, and an MS degree in electrical engineering, an MS degree in mathematics, and a Ph.D degree in electrical engineering from Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, in 2003, 2005, and 2007, respectively. Since 2007, she has been with the New York Institute of Technology, Old Westbury, New York, where she is an assistant professor with the Department of Electrical and Computer Engineering. Her research interests are in the areas of feedback control of nonlinear control systems, nonlinear control system abstraction, and feedback control of distributed parameter systems.

Pushkin Kachroo, Ph.D, received a BTech degree in civil engineering from the Indian Institute of Technology, Bombay, India, in 1988, an MS degree in mechanical engineering from Rice University, Houston, Texas, in 1990, a Ph.D degree in mechanical engineering from the University of California, Berkeley, in 1993, and MS and Ph.D degrees in mathematics from Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, in 2004 and 2007, respectively. He is the director of the Transportation Research Center, Harry Reid Center for Environmental Studies, Las Vegas, Nevada, and a professor with the Department of Electrical and Computer Engineering, University of Nevada, Las Vegas.