Muutke küpsiste eelistusi

E-raamat: Auxetic Materials and Structures

  • Formaat: PDF+DRM
  • Sari: Engineering Materials
  • Ilmumisaeg: 27-Dec-2014
  • Kirjastus: Springer Verlag, Singapore
  • Keel: eng
  • ISBN-13: 9789812872753
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 221,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Engineering Materials
  • Ilmumisaeg: 27-Dec-2014
  • Kirjastus: Springer Verlag, Singapore
  • Keel: eng
  • ISBN-13: 9789812872753
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book lays down the foundation on the mechanics and design of auxetic solids and structures, solids that possess negative Poisson’s ratio. It will benefit two groups of readers: (a) industry practitioners, such as product and structural designers, who need to control mechanical stress distributions using auxetic materials, and (b) academic researchers and students who intend to produce unique mechanical and other physical properties of structures using auxetic materials.
1 Introduction
1(44)
1.1 Definition of Poisson's Ratio
1(1)
1.2 History of Poisson's Ratio
2(1)
1.3 Definition of Auxetic Materials
3(2)
1.4 History of Negative Poisson's Ratio
5(1)
1.5 Naturally Occurring Auxetic Materials
6(1)
1.6 Auxetic Foams
7(25)
1.7 Auxetic Yarns and Textiles
32(5)
1.8 Auxetic Liquid Crystalline Polymers
37(1)
1.9 Other Topics
38(7)
References
40(5)
2 Micromechanical Models for Auxetic Materials
45(62)
2.1 Introduction
45(1)
2.2 Re-entrant Open-Cell Microstructure
45(3)
2.3 Nodule Fibril Microstructure---Hinging, Flexure and Stretching Modes of Fibrils
48(10)
2.4 Generalized 3D Tethered-Nodule Model
58(4)
2.5 Rotating Squares and Rectangles Models
62(10)
2.6 Rotating Triangles Models
72(4)
2.7 Tetrahedral Framework Structure
76(3)
2.8 Hard Cyclic Hexamers Model
79(2)
2.9 Missing Rib Models
81(7)
2.10 Chiral and Anti-chiral Lattice Models
88(9)
2.11 Interlocking Hexagons Model
97(6)
2.12 Egg Rack Structure
103(4)
References
103(4)
3 Elasticity of Auxetic Solids
107(40)
3.1 Constitutive Relationships
107(6)
3.2 Bounds in Poisson's Ratio for Isotropic Solids
113(4)
3.3 Constitutive Relationships for Isotropic Solids
117(3)
3.4 Moduli Relations
120(2)
3.5 Density-Modulus Relation in Auxetic Foams
122(3)
3.6 Large Elastic Deformation of Auxetic Solids
125(3)
3.7 Anisotropic Auxetic Solids
128(14)
3.8 Elastoplasticity of Auxetic Solids
142(2)
3.9 Viscoelasticity of Auxetic Solids
144(3)
References
144(3)
4 Stress Concentration, Fracture and Damage in Auxetic Materials
147(24)
4.1 Introduction
147(1)
4.2 Stress Concentration in Auxetic Solids with Cavities
148(1)
4.3 Stress Concentration in Auxetic Solids with Rigid Inclusions
149(2)
4.4 Stress Concentration in Auxetic Plates
151(1)
4.5 Stress Concentration in Auxetic Rods
152(4)
4.6 Fracture Characteristics of Auxetic Solids
156(2)
4.7 Stress and Displacement Fields Around Notches in Auxetic Solids
158(3)
4.8 Mode I Dimensionless Displacement Fields
161(1)
4.9 Mode II Dimensionless Displacement Fields
162(3)
4.10 Mode III Dimensionless Displacement Field
165(1)
4.11 Damage in Auxetic Solids
166(1)
4.12 Fatigue in Auxetic Materials
167(4)
References
168(3)
5 Contact and Indentation Mechanics of Auxetic Materials
171(30)
5.1 Introduction
171(1)
5.2 Line Contact on Auxetic Materials
171(9)
5.3 Point Contact on Auxetic Materials
180(5)
5.4 Effect of Indenter Shape on Auxetic Materials
185(6)
5.5 Contact Between Auxetic Spheres
191(4)
5.6 Contact Deformation in Auxetic Composites
195(2)
5.7 Indentation of Auxetic Foams
197(4)
References
199(2)
6 Auxetic Beams
201(16)
6.1 Stretching of Auxetic Bars
201(2)
6.2 Cantilever Bending of Auxetic Beams with Circular Cross Sections
203(2)
6.3 Cantilever Bending of Auxetic Beams with Rectangular Cross Sections
205(1)
6.4 Cantilever Bending of Auxetic Beams with Narrow Rectangular Cross Sections
206(1)
6.5 Cantilever Bending of Auxetic Beams with Wide Rectangular Cross Sections
206(1)
6.6 Cantilever Bending of Auxetic Beams with Regular Rectangular Cross Sections
207(3)
6.7 Uniformly Loaded Auxetic Beams with Narrow Rectangular Cross Sections
210(1)
6.8 Torsion of Auxetic Rods
211(2)
6.9 Remarks on Auxetic Rods with Circular Cross Sections
213(4)
References
215(2)
7 Auxetic Solids in Polar and Spherical Coordinates
217(14)
7.1 Introduction
217(1)
7.2 Thick-Walled Auxetic Cylinders
218(3)
7.3 Rotating Thin Auxetic Disks
221(3)
7.4 Rotating Thick Auxetic Disks
224(2)
7.5 Thick-Walled Auxetic Spheres
226(5)
References
230(1)
8 Thin Auxetic Plates and Shells
231(62)
8.1 Introduction
232(1)
8.2 Flexural Rigidity of Auxetic Plates
232(9)
8.3 Circular Auxetic Plates
241(18)
8.4 Rectangular Auxetic Plates
259(16)
8.5 Auxetic Plates on Auxetic Foundation
275(8)
8.6 In-Plane Compression of Constrained Auxetic Plate
283(2)
8.7 Spherical Auxetic Shells
285(8)
References
291(2)
9 Thermal Stresses in Auxetic Solids
293(28)
9.1 Introduction
293(1)
9.2 General Thermoelasticity of Auxetic Solids
294(4)
9.3 Thermoelasticity of 3D Auxetics with Complete Geometrical Constraints
298(1)
9.4 Thermoelasticity of Plates with Temperature Variation Along Thickness
298(2)
9.5 Thermoelasticity of Beams with Temperature Variation Along the Beam Thickness
300(2)
9.6 Dimensionless Thermal Stresses for Auxetic Plates and Shells
302(6)
9.7 Thermal Stresses for Auxetic Plates and Shells
308(8)
9.8 Summary on Thermal Stresses in Auxetic Plates and Shells
316(2)
9.9 Thermal Conductivity in Multi-re-entrant Honeycomb Structures
318(3)
References
320(1)
10 Elastic Stability of Auxetic Solids
321(24)
10.1 Introduction
321(1)
10.2 Buckling of Auxetic Columns
322(2)
10.3 Buckling of Rectangular Auxetic Plates
324(4)
10.4 Buckling of Circular Auxetic Plates
328(4)
10.5 Buckling of Cylindrical Auxetic Shells
332(4)
10.6 Buckling of Spherical Auxetic Shells
336(2)
10.7 Recent Advances on Instability in Relation to Auxetic Materials and Structures
338(7)
References
344(1)
11 Vibration of Auxetic Solids
345(22)
11.1 Introduction
345(1)
11.2 Vibration of Circular Auxetic Plates
346(4)
11.3 Vibration of Rectangular Auxetic Plates
350(8)
11.4 Vibration of Cylindrical Auxetic Shells
358(3)
11.5 Vibration of Spherical Auxetic Shells
361(1)
11.6 Advanced Topics on Vibration and Acoustics of Auxetic Solids and Structures
362(5)
References
364(3)
12 Wave Propagation in Auxetic Solids
367(18)
12.1 Introduction
367(2)
12.2 Longitudinal Waves in Prismatic Auxetic Bars
369(1)
12.3 Plane Waves of Dilatation in Auxetic Solids
370(1)
12.4 Plane Waves of Distortion in Auxetic Solids
371(2)
12.5 Rayleigh Waves in Auxetic Solids
373(1)
12.6 Non-dimensionalization of Wave Velocities
374(6)
12.7 Advanced Topics on Wave Motion in Auxetic Solids
380(5)
References
382(3)
13 Wave Transmission and Reflection Involving Auxetic Solids
385(20)
13.1 Introduction
385(2)
13.2 Analysis
387(2)
13.3 Longitudinal Wave (1D Stress State or 3D Strain State)
389(1)
13.4 Longitudinal Wave (Width-Constrained Plates)
390(1)
13.5 Plane Waves of Dilatation (1D Strain State or 3D Stress State)
390(1)
13.6 Torsional Waves
391(1)
13.7 Rayleigh Waves
392(1)
13.8 Non-dimensionalization of Transmitted and Reflected Stresses
392(2)
13.9 Dimensionless Transmitted Stress in Longitudinal Waves (1D Stress State)
394(1)
13.10 Dimensionless Transmitted Stress in Longitudinal Waves (Constrained-Width Plates)
395(2)
13.11 Dimensionless Transmitted Stress in Plane Waves of Dilatation
397(2)
13.12 Dimensionless Transmitted Stress in Torsional Waves
399(2)
13.13 Dimensionless Transmitted Stress in Rayleigh Waves
401(2)
13.14 Summary on Stress Wave Transmission Involving Auxetic Solids
403(2)
References
404(1)
14 Longitudinal Waves in Auxetic Solids
405(22)
14.1 Introduction
405(2)
14.2 Review of Elementary Analysis
407(1)
14.3 Density Correction
408(1)
14.4 Lateral Inertia
409(2)
14.5 Density Correction and Lateral Inertia
411(5)
14.6 Analogy with Plane Waves of Dilatation
416(3)
14.7 Lateral Inertia in Auxetic Love Rods
419(3)
14.8 Lateral Inertia and Density Correction in Auxetic Love Rods
422(5)
References
425(2)
15 Shear Deformation in Auxetic Solids
427(48)
15.1 Introduction
427(1)
15.2 Laterally-Loaded Thick Auxetic Beams
428(8)
15.3 Shear Correction Factors for Isotropic Plates Within -1 ≤ v ≤ 0.5
436(4)
15.4 Laterally-Loaded Thick Circular Auxetic Plates
440(4)
15.5 Laterally-Loaded Thick Polygonal Auxetic Plates
444(3)
15.6 Laterally-Loaded Thick Rectangular Auxetic Plates
447(6)
15.7 Buckling of Thick Auxetic Columns
453(6)
15.8 Buckling of Thick Auxetic Plates
459(8)
15.9 Vibration of Thick Auxetic Plates
467(8)
References
472(3)
16 Simple Semi-auxetic Solids
475(58)
16.1 Introduction
475(1)
16.2 Elastic Properties of a Directional Semi-auxetic Solid
476(6)
16.3 Kinematical Studies on Rotation-Based Semi-auxetics
482(7)
16.4 Analysis of Semi-auxetic Yams
489(9)
16.5 Processing of Semi-auxetic Yams
498(5)
16.6 Functionally-Graded Semi-auxetic Beams
503(5)
16.7 Semi-auxetic Rods
508(7)
16.8 Semi-auxetic Sandwich Plates
515(6)
16.9 Mixed Auxeticity of Semi-auxetic Sandwich Structures
521(12)
References
531(2)
17 Semi-auxetic Laminates and Auxetic Composites
533(48)
17.1 Introduction
533(1)
17.2 Semi-auxetic Unidirectional Fiber Composites
534(2)
17.3 Out-of-Plane Modulus of Semi-auxetic Laminates
536(8)
17.4 In-plane Modulus of Semi-auxetic Laminates
544(6)
17.5 Further Counter-Intuitive Modulus from Semi-auxetic Laminates
550(7)
17.6 Comparison Between In-Plane and Out-of-Plane Modulus of Semi-auxetic Laminates
557(1)
17.7 Semi-auxetic and Alternating Positive and Negative Thermal Expansion Laminates
558(11)
17.8 Auxetic Composites
569(12)
References
579(2)
Index 581
Dr. T.C. Lim earned his PhD in the area of material mechanics in 2001, and thereafter pioneered auxetic solids research in Asia. In addition to being Asias leading researcher in the area of auxetic solids, Dr. Lim is also a pioneer and one of the world leaders in the area of semi-auxetics. Dr. Lim has been serving as a scientific committee member in auxetic conferences and workshops since 2009. In addition, he has been serving as a journal reviewer for auxetic-related papers since 2004.