Muutke küpsiste eelistusi

E-raamat: Avoiding Inelastic Strains in Solder Joint Interconnections of IC Devices

(Portland State University, Portland, USA)
  • Formaat: 406 pages
  • Ilmumisaeg: 27-Jan-2021
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9780429863813
  • Formaat - EPUB+DRM
  • Hind: 74,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 406 pages
  • Ilmumisaeg: 27-Jan-2021
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9780429863813

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Avoiding Inelastic Strains in Solder Joint Interconnections of IC Devices addresses analytical (mathematical) modeling approaches aimed at understanding the underlying physics and mechanics of the behavior and performance of solder materials and solder joint interconnections of IC devices. The emphasis is on design for reliability, including probabilistic predictions of the solder lifetime.











Describes how to use the developed methods of analytical predictive modeling to minimize thermal stresses and strains in solder joint of IC devices





Shows how to build the preprocessing models in finite-element analyses (FEA) by comparing the FEA and analytical data





Covers how to design the most effective test vehicles for testing solder joints





Details how to design and organize, in addition to or sometimes even instead of highly accelerated life tests (HALT), highly focused and highly cost-effective failure oriented accelerated testing (FOAT) to understand the physic of failure of solder joint interconnections





Outlines how to convert the low cycle fatigue conditions into elastic fatigue conditions and to assess the fatigue lifetime in such cases





Illustrates ways to replace time- and labor-consuming, expensive, and possibly misleading temperature cycling tests with simpler and physically meaningful accelerated tests

This book is aimed towards professionals in electronic and photonic packaging, electronic and optical materials, materials engineering, and mechanical design.
Preface xv
Foreword xvii
Author Biography xxiii
Chapter 1 Analytical Modeling, Its Role and Significance
1(6)
References
5(2)
Chapter 2 Method of Interfacial Compliance
7(38)
2.1 Introduction
7(1)
2.2 Stresses in the Midportion of a Multimaterial Body Subjected to a Change in Temperature
8(2)
2.3 Bimaterial Assembly: Interfacial Shearing Stresses
10(3)
2.4 Bimaterial Assembly: Interfacial Peeling Stresses
13(3)
2.5 Trimaterial Assembly: Interfacial Shearing Stresses
16(3)
2.6 Trimaterial Assembly: Interfacial Peeling Stresses
19(3)
2.7 Numerical Example
22(7)
2.8 Bimaterial Assembly Subjected to Thermal Stress: Propensity to Delamination Assessed Using the Interfacial Compliance Model
29(16)
2.8.1 Background/Incentive
29(1)
2.8.2 Strain Energy Release Rate (SERR) Computed Using the Interfacial Compliance Approach
30(4)
2.8.3 Adequate SERR Specimen's Length
34(1)
2.8.3.1 Numerical Example #1
34(1)
2.8.3.2 Numerical Example #2
35(1)
2.8.4 Probabilistic Approach: Application of the Extreme Value Distribution
36(1)
2.8.5 Probabilistic Approach: Numerical Example
36(2)
Appendix A Convolution of Extreme Value Distribution with a Normally Distributed Variable
38(1)
Appendix B A Numerical Integration Example
39(1)
References
40(5)
Chapter 3 Thermal Stress in Assemblies with Identical Adherends
45(44)
3.1 Introduction
45(1)
3.2 Bell Labs Si-on-Si multi-chip flip-chip Packaging Technology
45(4)
3.3 Simplest Elongated Assembly with Identical Adherends
49(2)
3.4 Assembly with Identical Adherends Subjected to Different Temperatures: Thermal Stresses in a Multileg Thermoelectric Module Design
51(22)
3.4.1 Motivation
51(2)
3.4.2 Background
53(1)
3.4.3 Basic Equation
53(3)
3.4.4 Theorem of Three Axial Forces
56(1)
3.4.5 Special Cases
57(1)
3.4.5.1 Homogeneously Bonded Assembly
57(1)
3.4.5.2 Assembly Bonded at the Ends (Two-Legged TEM)
58(1)
3.4.5.3 Midportion of a Long Multilegged Assembly
59(1)
3.4.6 TEM Designs in Figures 3.11 and 3.12
59(6)
3.4.7 TEM Designs in Figures 3.11 and 3.12
65(3)
3.4.8 Design in Figure 3.12 for a High-Temperature Power Generation TEM
68(2)
3.4.9 Ultrathin and Long (Beam-Like) Legs
70(3)
3.5 Predicted thermal stress in a circular bonded assembly with identical adherends
73(16)
3.5.1 Motivation
73(1)
3.5.2 Assumptions
74(1)
3.5.3 Basic Equation
75(2)
3.5.4 Solution to the Basic Equation
77(1)
3.5.5 Large and/or Stiff Assemblies
78(1)
3.5.6 Normal Stresses in the Bonding Layer
79(1)
3.5.7 Bow
79(3)
3.5.8 Bending Stresses in the Adherends
82(1)
3.5.9 Peeling Stress
83(1)
3.5.10 Numerical Example
83(2)
References
85(4)
Chapter 4 Inelastic Strains in Solder Joint Interconnections
89(38)
4.1 Background/Motivation
89(3)
4.2 Assumptions
92(1)
4.3 Shearing Stress
93(7)
4.3.1 Basic Equation
93(2)
4.3.2 Boundary Conditions
95(1)
4.3.4 Elasto-Plastic Solution
96(2)
4.3.5 Possible Numerical Procedure for Solving the Elasto-Plastic Equations
98(1)
4.3.6 Predicted Lengths of the Plastic Zones Based on an Elastic Solution
99(1)
4.4 Peeling Stress
100(4)
4.4.1 Basic Equation
100(2)
4.4.2 Solution to the Basic Equation
102(2)
4.5 Numerical Example
104(2)
4.6 The Case of a BGA Assembly
106(6)
4.6.1 Background/Motivation
106(1)
4.6.2 Basic Equation
107(3)
4.6.3 Numerical Example #1 (PCB Substrate)
110(1)
4.6.4 Numerical Example #2 (Ceramic Substrate)
111(1)
4.7 Probabilistic Palmgren-Miner Rule for Solder Materials Experiencing Elastic Deformations
112(15)
4.7.1 Background/Incentive
112(2)
4.7.2 Probabilistic Palmgren-Miner Rule
114(2)
4.7.3 Remaining Useful Life
116(2)
4.7.4 Rayleigh Law for the Random Amplitude of the Interfacial Shearing Stress
118(2)
4.7.5 Numerical Example
120(3)
References
123(4)
Chapter 5 Elevated Stand-Off Heights Can Relieve Thermal Stress in Solder Joints
127(24)
5.1 Background/Motivation
127(3)
5.2 StreSses in a Short Beam Subjected to Bending Caused by its End Offset
130(3)
5.3 Interfacial Stresses in Assemblies with Small Stand-off Heights
133(8)
5.4 Head-In-Pillow Problem
141(10)
5.4.1 Motivation
141(1)
5.4.2 Background
141(2)
5.4.3 Interfacial Stresses and Warpage
143(3)
5.4.4 Numerical Example
146(1)
References
147(4)
Chapter 6 Stress Relief in Soldered Assemblies by Using Inhomogeneous Bonds
151(20)
6.1 Background/Incentive
151(1)
6.2 Assembly's Midportion
152(4)
6.3 Assembly's Peripheral Portion(s) and Forces at the Boundaries
156(2)
6.4 Interfacial Stresses
158(1)
6.5 Numerical Example
159(5)
6.6 Optimized Design
164(3)
6.6.1 Optimization Condition
164(1)
6.6.2 Peripheral Material with a Low Fabrication Temperature
165(1)
6.6.3 Peripheral Material with a Low Parameter of the Interfacial Shearing Stress
165(1)
6.6.4 Peripheral Material with a Low Parameter of the Interfacial Shearing Stress and Low Fabrication Temperature
166(1)
6.7 Conclusions
167(4)
References
168(3)
Chapter 7 Thermal Stresses in a Flip-Chip Design
171(42)
7.1 Background/Incentive
171(2)
7.2 Thermal Stress Model for a Typical Flip-Chip Package Design
173(10)
7.2.1 Approach
173(2)
7.2.2 Forces Acting in the Midportion of the Assembly Located at the Design's Midportion
175(5)
7.2.3 Peripheral Portions of the Design
180(3)
7.3 Numerical Examples
183(13)
7.3.1 Design with an Organic Lid: Midportion of the Design
183(2)
7.3.2 Design with an Organic Lid: Peripheral Portion of the Design
185(4)
7.3.3 Design with a Copper Lid: NJidportion of the Design
189(3)
7.3.4 Design with a Copper Lid: Peripheral Portions of the Design
192(4)
7.4 Is it Really Important that the Entire Underchip Area is Encapsulated ("Underfilled")?
196(1)
7.5 Stress Relief in an FC Design Due to the Application of an Inhomogeneous Solder Joint System
197(1)
7.6 Effect of the Underfill Glass Transition Temperature
198(15)
7.6.1 Background
198(1)
7.6.2 Assumptions
199(1)
7.6.3 Thermally Induced Forces and Interfacial Stresses
199(1)
7.6.3.1 Thermally Induced Forces in the Midportion of a Long Flip-Chip/Substrate Assembly
200(1)
7.6.3.2 Distributed Thermally Induced Forces
200(1)
7.6.3.3 Interfacial Shearing Stresses
201(1)
7.6.4 Numerical Example
201(9)
References
210(3)
Chapter 8 Assessed Interfacial Strength and Elastic Moduli of the Bonding Material from Shear-Off Test Data
213(12)
8.1 Background/Incentive
213(1)
8.2 Basic Equation
214(3)
8.3 Solution to the Basic Equation
217(1)
8.4 Interfacial Shearing Stress
217(1)
8.5 Shear Modulus of the Bonding Material
218(1)
8.6 Numerical Example
219(1)
8.7 Possible Characterization of the Solder Material Properties
220(1)
8.8 Conclusion
221(4)
References
222(3)
Chapter 9 Board-Level Dynamic Tests
225(22)
9.1 Background
225(1)
9.2 Drop Testing
226(2)
9.3 Role Of Modeling
228(1)
9.4 Linear Response
229(5)
9.5 Nonlinear Response
234(8)
9.6 Solder Joints
242(2)
9.7 Board-Level Testing
244(1)
9.8 Conclusions
245(2)
Appendix A Exact Solution to the Problem of the Nonlinear Dynamic Response of a PCB to the Drop Impact during Board-Level Drop Tests
247(97)
A.1 Background/Initiative
247(2)
A.2 Assumptions
249(1)
A.3 Kinetic and Strain Energies
249(1)
A.4 Condition of Nondeformability of the PCB Support Contour
250(1)
A.5 Stress (Airy) Function
250(1)
A.6 In-plane (membrane) Stresses and Strains
251(1)
A.7 Parameter of Nonlinearity
252(1)
A.8 Basic Equation and Its Solution
252(1)
A.9 Vibration Amplitude
253(1)
A.10 Effective Initial Velocity
254(1)
A.11 Nonlinear Frequency
255(1)
A.12 Bending Moments
255(1)
A.13 Equivalent Static Loading
256(1)
A.14 Numerical Example
257(12)
References
262(5)
Appendix References
267(2)
Chapter 10 Failure-Oriented-Accelerated-Testing and Multiparametric Boltzmann-Arrhenius-Zhurkov Equation
269(48)
10.1 Accelerated Testing
269(3)
10.2 FOAT, Its Significance, Attributes, and Role
272(2)
10.3 Multiparametric BAZ Equation
274(6)
10.4 Temperature Cycling: Predicted Time-to-failure
280(3)
10.5 Incentive for Mechanical Prestressing of Accelerated Test Specimens
283(14)
10.5.1 Background/Incentive
283(1)
10.5.2 Basic Equations
284(5)
10.5.3 Boundary Conditions
289(1)
10.5.4 Solutions to the Basic Equations
290(2)
10.5.5 Constants of Integration
292(1)
10.5.6 Numerical Example
293(4)
10.6 Accelerated Testing of Solder Joint Interconnections: Incentive for Using a Low-Temperature/Random-Vibrations Bias
297(8)
10.6.1 Background/Incentive
297(1)
10.6.2 Methodology
298(1)
10.6.3 Reduction to Practice
298(1)
10.6.4 Calculation Procedure
298(3)
10.6.5 Numerical Example
301(4)
10.6.6 Testing Facility and Procedure
305(1)
10.6.7 Conclusion
305(1)
10.7 Possible Next-Generation QT
305(12)
Appendix A Elastic Stability of the Specimen as a Whole
306(1)
Appendix B Approximate Formula for the Interfacial Peeling Stress and Elastic Stability of the Compressed Component #1
306(3)
References
309(8)
Chapter 11 Probabilistic Design for Reliability
317(27)
11.1 Background/Incentive
317(2)
11.2 PDfR and its "ten commandments"
319(2)
11.3 Design for Reliability of Electronic Products: Deterministic and Probabilistic Approaches
321(1)
11.4 Some simple PDfR examples
322(6)
11.4.1 Adequate Heat Sink
322(1)
11.4.2 Reliable Seal Glass
323(3)
11.4.3 Extreme Response in Temperature Cycling
326(2)
11.5 The Total Cost of Reliability could be Minimized: Elementary Example
328(2)
11.6 Required Repair Time to Assure the Specified Availability
330(6)
11.6.1 Background/Incentive
330(1)
11.6.2 Analysis
330(5)
11.6.3 Numerical Example
335(1)
11.6.4 Conclusion
336(1)
11.7 Burn-in Testing of Electronic and Photonic Products: To BIT or not to BIT?
336(8)
11.7.1 Background/Initiative
336(1)
11.7.2 Objective
337(1)
11.7.3 Information Based on the Available BTC
338(6)
11.8 Conclusion
344(1)
Appendix A Reliability of an Electronic Product Comprised of Mass-Produced Components
344(31)
A.1 Summary
344(1)
A.2 Background/Incentive
345(1)
A.3 Analysis
345(12)
A.3.1 Analytical Bathtub Curve (Diagram)
345(1)
A.3.2 Statistical Failure Rate
346(1)
A.3.3 The Case When Random SFR is Normally Distributed
347(4)
A.3.4 The Case When Random SFR is Distributed in Accordance with the Rayleigh Law
351(2)
A.3.5 Probability of Nonfailure
353(1)
A.4 Conclusions
354(1)
References
354(2)
Appendix References
356(1)
Chapter 12 Fiber Optics Systems and Reliability of Solder Materials
357(18)
12.1 Background/Objective
357(1)
12.2 Fiber Optics Structural Analysis (FOSA) in Fiber Optics Engineering: Role and Attributes
358(1)
12.3 Fibers Soldered into Ferrules
359(1)
12.4 Thermal Stresses in a Cylindrical Soldered TriMaterial Body with Application to Optical Fibers
360(15)
12.4.1 Background/Incentive
360(1)
12.4.2 Analysis
360(6)
12.4.3 Numerical Example
366(2)
12.4.4 Conclusion
368(1)
References
368(7)
Index 375
Ephraim Suhir is Foreign Full Member (Academician) of the National Academy of Engineering, Ukraine (he was born in that country); Life Fellow of the Institute of Electrical and Electronics Engineers (IEEE); the American Society of Mechanical Engineers (ASME), the Society of Optical Engineers (SPIE) and the International Microelectronics and Packaging Society (IMAPS); Fellow of the American Physical Society (APS), the Institute of Physics (IoP), UK, and the Society of Plastics Engineers (SPE); and Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA). Ephraim has authored about 400+ publications (patents, technical papers, book chapters, books), presented numerous keynote and invited talks worldwide, and received many professional awards, including the 1996 Bell Labs Distinguished Member of Technical Staff Award and the 2004 ASME Worcester Read Warner Medal for outstanding contributions to the permanent literature of engineering. He is the third Russian American, after Stephen Timoshenko and Igor Sikorsky, who received this prestigious award.