Muutke küpsiste eelistusi

E-raamat: Ballast Railroad Design: SMART-UOW Approach

(University of Wollongong, Australia), (University of Wollongong, Australia)
  • Formaat: 176 pages
  • Ilmumisaeg: 27-Jun-2018
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9780429996320
  • Formaat - PDF+DRM
  • Hind: 62,40 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 176 pages
  • Ilmumisaeg: 27-Jun-2018
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9780429996320

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The rail network plays an essential role in transport infrastructure worldwide. A ballasted track is commonly used for several reasons, including economic considerations, load bearing capacity, rapid drainage and ease of maintenance. Given the ever-increasing demand for trains to carry heavier axle loads at greater speeds, traditional design and construction must undergo inevitable changes for sustainable performance. Ballast is an unbounded granular assembly that displaces when subjected to repeated train loading affecting track stability. During heavy haul operations, ballast progressively deteriorates and the infiltration of fluidized fines (mud pumping) from the underlying substructure and subgrade decreases its shear strength and also impedes drainage, while increasing track deformation and associated maintenance.

Features:





serves as a useful guide to assist the practitioner in new track design as well as remediating existing tracks. research discussed in this book has made considerable impact on the railway industry. resulting from collaborative research between academia and industry, incorporating sophisticated laboratory tests, computational modelling and field studies.

This book presents a comprehensive procedure for the design of ballasted tracks based on a rational approach that combines extensive laboratory testing, computational modelling and field measurements conducted over the past two decades. Ballast Railroad Design: SMART-UOW Approach will not only become an imperative design aid for rail practitioners, but will also be a valuable resource for postgraduate students and researchers alike in railway engineering.
Preface x
Foreword xi
About the authors xii
Acknowledgements xiv
1 Introduction 1(4)
1.1 General background
1(1)
1.2 Limitations of current track design practices
2(1)
1.3 New developments in SMART-UOW approach
2(2)
1.4 Scope
4(1)
2 Parameters for track design 5(12)
2.1 General background
5(1)
2.2 Typical ballasted track problems
5(3)
2.3 Typical input parameters for track design
8(1)
2.4 Substructure of ballasted tracks
8(1)
2.5 Ballast
9(2)
2.5.1 Ballast characteristics
9(2)
2.6 Sub-ballast, subgrade/formation soils
11(2)
2.6.1 Sub-ballast/filtration layer
12(1)
2.6.2 Subgrade
12(1)
2.7 Geosynthetics
13(1)
2.8 Design criteria
14(1)
2.9 Traffic conditions
15(1)
2.10 Rail and sleeper properties
16(1)
3 Bearing capacity of ballasted tracks 17(6)
3.1 Introduction
17(1)
3.2 Calculation of design wheel load (P)
17(2)
3.2.1 AREA (1974) method
17(1)
3.2.2 Eisenmann (1972) method
18(1)
3.2.3 ORE (1969) method
19(1)
3.3 Calculation of maximum rail seat load
19(2)
3.3.1 AREA (1974) method
19(1)
3.3.2 ORE (1969) method
20(1)
3.3.3 Raymond (1977) method
20(1)
3.4 Calculation of ballast/sleeper contact pressure
21(1)
3.4.1 AREA (1974) method
21(1)
3.5 Bearing capacity of ballast
21(2)
4 Thickness of granular layer 23(14)
4.1 Introduction
23(1)
4.2 Procedure to determine the thickness of ballast and capping layer
23(3)
4.2.1 Design procedure
23(3)
4.3 Equivalent modulus and strain analysis
26(3)
4.4 Determination of track modulus
29(3)
4.4.1 Introduction
29(3)
4.5 Determining the resilient modulus of ballast, MR
32(5)
4.5.1 Empirical relationship to determine resilient modulus
32(2)
4.5.2 Measured field values of dynamic track modulus
34(3)
5 Effect of confining pressure and frequency on ballast breakage 37(14)
5.1 Introduction
37(1)
5.2 Determination of ballast breakage
37(2)
5.3 Influence of confining pressure on ballast breakage
39(6)
5.3.1 Prototype testing and experimental simulations
39(2)
5.3.2 Laboratory study on the effect of confining pressure on ballast degradation
41(1)
5.3.3 Prediction of axial strains and ballast breakage
42(2)
5.3.4 Resilient modulus of ballast
44(1)
5.4 Influence of frequency on ballast breakage
45(5)
5.5 Volumetric behaviour of ballast under monotonic and cyclic loading
50(1)
6 Impact of ballast fouling on rail tracks 51(15)
6.1 Introduction
51(1)
6.2 Quantifying of ballast fouling
51(3)
6.3 Relation among fouling quantification indices
54(1)
6.4 Influence of ballast fouling on track drainage
55(5)
6.4.1 Drainage requirements
56(2)
6.4.2 Fouling versus drainage capacity of track
58(2)
6.5 Fouling versus operational train speed
60(3)
6.6 Determining VCI in the field
63(3)
7 Application of geosynthetics in railway tracks 66(28)
7.1 Types and functions of geosynthetics
66(1)
7.2 Geogrid reinforcement mechanism
66(1)
7.3 Use of geosynthetics in tracks-UOW field measurements and laboratory tests
67(2)
7.3.1 Track construction at Bulli
67(2)
7.4 Measured ballast deformation
69(1)
7.5 Traffic-induced stresses
70(1)
7.6 Optimum geogrid size for a given ballast
70(2)
7.7 Role of geosynthetics on track settlement
72(6)
7.7.1 Predicted settlement of fresh ballast
73(2)
7.7.2 Predicted settlement of recycled ballast
75(1)
7.7.3 Settlement reduction factor
75(1)
7.7.4 The effect of fouling on the ballast-geogrid interface shear strength
75(3)
7.8 The effect of coal fouling on the load-deformation of geogrid-reinforced ballast
78(16)
7.8.1 Laboratory study using process simulation testing apparatus
78(4)
7.8.2 Materials tested
82(3)
7.8.3 Cyclic testing program
85(1)
7.8.4 Lateral deformation of fresh and fouled ballast
86(1)
7.8.5 Vertical settlements of fresh and fouled ballast
86(2)
7.8.6 Average volumetric and shear strain responses
88(2)
7.8.7 Maximum stresses and ballast breakage
90(1)
7.8.8 Proposed deformation model of fouled ballast
91(3)
8 UOW-constitutive model for ballast 94(9)
8.1 Introduction
94(1)
8.2 Stress and strain parameters
94(9)
8.2.1 Determination of model parameters
98(1)
8.2.2 Applimcation of the UOW constitutive model to predict stress-strain responses
98(5)
9 Sub-ballast and filtration layer-design procedure 103(6)
9.1 Introduction
103(1)
9.2 Requirements for effective and internally stable filters
104(1)
9.3 Filter design procedure
104(5)
9.3.1 Internal stability of subgrade
104(2)
9.3.2 Re-grading subgrade
106(1)
9.3.3 Selection of capping (sub-ballast) band and PSD of filter
106(1)
9.3.4 Internal stability of capping
107(1)
9.3.5 Application of CSD-based retention criterion
108(1)
9.3.6 Thickness of a sub-ballast filter
108(1)
10 Practical design examples 109(20)
10.1 Worked-out example 1: calculate the bearing capacity of ballasted tracks
109(2)
10.1.1 Design parameters
109(1)
10.1.2 Calculation procedure
109(2)
10.2 Worked-out example 2: determine the thickness of granular layer
111(1)
10.2.1 Calculation procedure
111(1)
10.3 Worked-out example 3: ballast fouling and implications on drainage capacity, train speed
112(2)
10.3.1 Calculate levels of ballast fouling
113(1)
10.3.2 Effect of ballast fouling on track drainage
113(1)
10.3.3 Fouling versus train speed
113(1)
10.4 Worked-out example 4: use of geosynthetics in ballasted tracks
114(2)
10.4.1 Design input parameters
114(1)
10.4.2 Predicted settlement of fresh ballast at N = 500,000 load cycle
115(1)
10.4.3 Recycled ballast
115(1)
10.5 Worked-out example 5: evaluation of track modulus and settlement
116(1)
10.5.1 Determine the overall track modulus for a given track structure with the following information
116(1)
10.5.2 Calculation procedure
116(1)
10.6 Worked-out example 6: determine the friction angle of fouled ballast
117(1)
10.6.1 Calculation procedure
117(1)
10.7 Worked-out example 7: determine the settlement of fouled ballast
118(1)
10.7.1 Calculation procedure
119(1)
10.8 Worked-out example 8: calculate the ballast breakage index (BBI)
119(4)
10.8.1 Calculation procedure
120(3)
10.9 Worked-out example 9: effect of the depth of subgrade on determine thickness of granular layer
123(2)
10.9.1 Example: Design a ballasted track substructure for a train crossing two different sections over the same highly plastic clay subgrade (CH); one section has 10 times the thickness of the other
124(1)
10.9.2 Design summary
125(1)
10.10 Worked-out example 10: design of sub-ballast/capping as a filtration layer for track
125(4)
10.10.1 Design example 10.1: selection of effective granular filters effective to retain a base soil under given hydraulic conditions
125(1)
10.10.2 Sub-ballast filter design
125(1)
10.10.3 Design example 10.2: Geometrical assessment of internal instability potential of sub-ballast filter
126(3)
11 Appendix A: Introduction of SMART tool for track design 129(16)
11.1 Introduction
129(2)
11.2 Practical design examples using SMART tool
131(14)
11.2.1 Bearing capacity of ballast
131(1)
11.2.2 Granular layer thickness
131(1)
11.2.3 Effect of confining pressure
131(1)
11.2.4 Effect of ballast fouling on track drainage
131(1)
11.2.5 Effect of ballast fouling on operational train speed
131(1)
11.2.6 Use of geosynthetics in tracks
131(4)
11.2.7 Predicted settlements of ballast with or without geogrid
135(1)
11.2.8 Ballast Constitutive Model
135(4)
11.2.9 Selection of capping/sub-ballast for filtration layer
139(6)
12 Appendix B: Unique geotechnical and rail testing equipment at the University of Wollongong 145(8)
References 153(6)
Index 159
Buddhima Indraratna is Professor of Civil Engineering at the Centre for Geomechanics and Railway Engineering at the University of Wollongong, Australia.

Trung Ngo is Research Fellow at the School of Civil, Mining and Environmental Engineering at the University of Wollongong, Australia.