Muutke küpsiste eelistusi

E-raamat: Bandwidth and Efficiency Enhancement in Radio Frequency Power Amplifiers for Wireless Transmitters

  • Formaat - PDF+DRM
  • Hind: 135,23 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book focuses on broadband power amplifier design for wireless communication. Nonlinear model embedding is described as a powerful tool for designing broadband continuous Class-J and continuous class F power amplifiers. The authors also discuss various techniques for extending bandwidth of load modulation based power amplifiers, such as Doherty power amplifier and Chireix outphasing amplifiers. The book also covers recent trends on digital as well as analog techniques to enhance bandwidth and linearity in wireless transmitters.

  • Presents latest trends in designing broadband power amplifiers;
  • Covers latest techniques for using nonlinear model embedding in designing power amplifiers based on waveform engineering;
  • Describes the latest techniques for extending bandwidth of load modulation based power amplifiers such as Doherty power amplifier and Chireix outphasing amplifiers;
  • Includes coverage of hybrid analog/digital predistortion as wideband solution for wireless transmitters;
  • Discusses recent trends on on-chip power amplifier design with GaN /GaAs MMICs for high frequency applications.

1 Introduction to RF Power Amplifier Design and Architecture
1(106)
1.1 Introduction
1(1)
1.2 Power Amplifier Design Parameters
2(7)
1.2.1 Power Amplifier Design Specifications
2(1)
1.2.2 Power Amplifier Nonlinear Distortion Parameters
3(3)
1.2.3 Modulated Measurement and Characterization of Power Amplifiers
6(3)
1.3 High-Efficiency Power Amplifier Design
9(43)
1.3.1 Classes of Operation: Based on Conduction Angle Mode
9(5)
1.3.2 Switch-Mode Power Amplifiers
14(20)
1.3.3 Continuous Mode of Operation
34(13)
1.3.4 Harmonic Injection-Based Power Amplifiers
47(5)
1.4 Load Modulation for Average Efficiency Enhancement
52(24)
1.4.1 Doherty Power Amplifier
52(5)
1.4.2 Multistage Doherty Power Amplifier
57(19)
1.5 Power Amplifier Linearization
76(17)
1.5.1 Nonlinear Characterization
76(6)
1.5.2 Predistortion
82(9)
1.5.3 Feedforward Architecture
91(2)
1.6 Delta-Sigma Modulation-Based Transmitters
93(14)
References
100(7)
2 Nonlinear Device Characterization and Modeling for Power Amplifiers
107(36)
2.1 Introduction
107(1)
2.2 Transistors Used in Power Amplifiers
107(2)
2.3 Figures-of-Merit
109(4)
2.4 Transistor Modeling
113(3)
2.5 Distributed Effects Along the Gate Width
116(6)
2.6 Characterizing and Modeling Memory Effects in Transistors
122(9)
2.7 Large Signal Measurement Techniques
131(2)
2.8 Load-Pull and Interactive Load Line-Based PA Design
133(2)
2.9 Behavioral Modeling
135(8)
2.9.1 Harmonic Volterra Functions
135(5)
References
140(3)
3 Power Amplifier Design Using Nonlinear Embedding
143(48)
3.1 Introduction to the Nonlinear Embedding Device Model
143(6)
3.2 Design of Switch-Mode Power Amplifiers with an Embedding Model
149(9)
3.3 Design of Load Modulation Power Amplifiers with an Embedding Model
158(33)
3.3.1 Continuum Theory
159(7)
3.3.2 Design of the Outphasing Power Amplifier Combiner at the Package Reference Planes
166(3)
3.3.3 Dual-Input Doherty Power Amplifier
169(5)
3.3.4 Chireix Power Amplifier
174(9)
3.3.5 Hybrid Chireix-Doherty Power Amplifier
183(3)
3.3.6 Conclusion
186(2)
References
188(3)
4 Broadband Techniques in Power Amplifiers
191(110)
4.1 Introduction
191(2)
4.2 Broadband Continuous Class of Operation
193(24)
4.2.1 Design Strategy for Continuous Class J Power Amplifiers
193(6)
4.2.2 Design Strategy for Continuous Class F Power Amplifier
199(10)
4.2.3 Reactive Compensation Scheme in Class E Power Amplifier for Broadband Application
209(8)
4.3 Bandwidth Enhancement in Harmonic Injection Power Amplifiers
217(6)
4.4 Enhancing the Operating Range and Bandwidth of Load Modulation Schemes
223(55)
4.4.1 Architectures for Broadband Doherty Power Amplifier
223(15)
4.4.2 Broadband Multistage Doherty Power Amplifier with High Dynamic Range
238(18)
4.4.3 Broadband Generalized Load Combiner for Doherty Power Amplifier
256(13)
4.4.4 Broadband and Multiband Chireix Outphasing Power Amplifier
269(9)
4.5 Distributed Power Amplifiers
278(9)
4.6 Broadband Power Combining Techniques
287(14)
4.6.1 Transformer-Type Power Combiner
289(3)
4.6.2 Reactively Matched Power Combiner
292(3)
References
295(6)
5 Digital Techniques for Broadband and Linearized Transmitters
301(50)
5.1 Introduction
301(1)
5.2 Nonlinear Behavior of Multiband RF Transmitters
302(12)
5.2.1 Identification of IMD Terms for Multiband Operation
302(5)
5.2.2 Multiband Signals at Unrelated Frequencies
307(2)
5.2.3 Multiband Signals at Harmonically Related Frequencies
309(5)
5.3 Nonlinear Harmonic Injection Scheme for Filterless Transmitter Architecture
314(7)
5.3.1 Digitally Supported Feed-Forward Technique
316(3)
5.3.2 Digitally Supported Harmonic Injection Technique
319(2)
5.4 Delta Sigma-Based Transmitters
321(6)
5.4.1 Multilevel Architectures
321(4)
5.4.2 Time Interleaving and Digital Sequencing in Multilevel Architecture
325(2)
5.5 Hybrid Predistortion Scheme for Broadband Linearization
327(13)
5.5.1 Digital Vector Modulator-Based Architecture
332(3)
5.5.2 Analog Vector Modulator-Based Architecture
335(5)
5.6 Linearization Example for Bias Modulation and Envelope Tracking
340(11)
5.6.1 Envelope Tracking PA
341(1)
5.6.2 Conventional Dual-Band ET PA Behavioral Models
341(2)
5.6.3 Behavioral Model of ET-PA
343(4)
References
347(4)
6 Advance Materials for Power Amplifier Design and Packaging
351(1)
6.1 Introduction
351(1)
6.2 On-Chip Power Amplifiers
351(1)
6.2.1 MOS-Based Design
352(5)
6.2.2 GaAs and GaN MMIC Designs
357(4)
6.3 Reconfigurability and Tuning in Power Amplifiers Using Microelectromechanical Systems
361(7)
6.4 Design and Challenges in High-Frequency and High-Power Packaging
368(6)
6.5 Techniques for Millimeter-Wave Power Amplifier Design
374(5)
References
379(4)
Index 383
Karun Rawat is an Assistant Professor in the Department of Electronics and Communication Engineering at the Indian Institute of Technology (I.I.T.) Roorkee, India.





Patrick Roblin is a Professor in the Department of Electrical & Computers Engineering at The Ohio State University, in Columbus, USA.





Shiban Koul is Emeritus Professor in the Centre for Applied Research in Electronics at the Indian Institute of Technology (I.I.T.) Delhi, India.