|
|
1 | (6) |
|
|
3 | (4) |
|
|
4 | (2) |
|
|
6 | (1) |
|
|
7 | (202) |
|
|
9 | (16) |
|
|
9 | (9) |
|
|
18 | (2) |
|
|
20 | (1) |
|
2.3 Bolzano - Weierstrass in R2 |
|
|
20 | (5) |
|
|
22 | (3) |
|
|
25 | (36) |
|
3.1 Vector Spaces over a Field |
|
|
25 | (5) |
|
3.1.1 The Span of a Set of Vectors |
|
|
28 | (2) |
|
|
30 | (3) |
|
|
32 | (1) |
|
|
33 | (23) |
|
3.3.1 Two Dimensional Vectors in the Plane |
|
|
33 | (3) |
|
3.3.2 The Connection between Two Orthonormal Bases |
|
|
36 | (2) |
|
3.3.3 The Invariance of the Inner Product |
|
|
38 | (1) |
|
3.3.4 Two Dimensional Vectors as Functions |
|
|
39 | (9) |
|
3.3.5 Three Dimensional Vectors in Space |
|
|
48 | (4) |
|
3.3.6 The Solution Space of Higher Dimensional ODE Systems |
|
|
52 | (4) |
|
3.4 Best Approximation in a Vector Space with Inner Product |
|
|
56 | (5) |
|
|
59 | (2) |
|
|
61 | (24) |
|
4.1 Organizing Point Cloud Data |
|
|
61 | (1) |
|
|
62 | (1) |
|
4.2 Linear Transformations |
|
|
62 | (1) |
|
|
63 | (1) |
|
4.3 Sequence Spaces Revisited |
|
|
63 | (8) |
|
|
70 | (1) |
|
4.4 Linear Transformations between Normed Linear Spaces |
|
|
71 | (11) |
|
|
73 | (1) |
|
4.4.2 Mappings between Finite Dimensional Vector Spaces |
|
|
74 | (8) |
|
4.5 Magnitudes of Linear Transformations |
|
|
82 | (3) |
|
|
85 | (24) |
|
5.1 The General Two by Two Symmetric Matrix |
|
|
85 | (7) |
|
|
86 | (1) |
|
|
87 | (3) |
|
5.1.3 Two Dimensional Rotations |
|
|
90 | (1) |
|
|
91 | (1) |
|
|
92 | (3) |
|
|
94 | (1) |
|
5.3 A Complex ODE System Example |
|
|
95 | (7) |
|
5.3.1 The General Real and Complex Solution |
|
|
95 | (2) |
|
5.3.2 Rewriting the Real Solution |
|
|
97 | (3) |
|
5.3.3 Signed Definite Matrices |
|
|
100 | (1) |
|
|
101 | (1) |
|
5.4 Symmetric Systems of ODEs |
|
|
102 | (7) |
|
5.4.1 Writing the Solution Another Way |
|
|
104 | (2) |
|
|
106 | (3) |
|
6 Continuity and Topology |
|
|
109 | (18) |
|
6.1 Topology in n Dimensions |
|
|
109 | (3) |
|
|
112 | (1) |
|
|
112 | (1) |
|
|
113 | (5) |
|
|
118 | (1) |
|
6.4 Functions of Many Variables |
|
|
118 | (9) |
|
6.4.1 Limits and Continuity for Functions of Many Variables |
|
|
119 | (8) |
|
7 Abstract Symmetric Matrices |
|
|
127 | (18) |
|
7.1 Input-Output Ratios for Matrices |
|
|
127 | (1) |
|
|
128 | (1) |
|
7.2 The Norm of a Symmetric Matrix |
|
|
128 | (13) |
|
7.2.1 Constructing Eigenvalues |
|
|
133 | (8) |
|
|
141 | (1) |
|
7.4 Signed Definite Matrices Again |
|
|
142 | (3) |
|
|
143 | (2) |
|
8 Rotations and Orbital Mechanics |
|
|
145 | (38) |
|
|
145 | (3) |
|
|
147 | (1) |
|
|
148 | (9) |
|
|
149 | (2) |
|
|
151 | (1) |
|
8.2.3 The Constant B Vector |
|
|
151 | (2) |
|
|
153 | (4) |
|
8.3 Three Dimensional Rotations |
|
|
157 | (9) |
|
|
160 | (1) |
|
|
160 | (5) |
|
|
165 | (1) |
|
8.4 Drawing the Orbital Plane |
|
|
166 | (7) |
|
8.4.1 The Perifocal Coordinate System |
|
|
169 | (2) |
|
|
171 | (2) |
|
8.5 Drawing Orbital Planes Given Radius and Velocity Vectors |
|
|
173 | (10) |
|
|
180 | (3) |
|
9 Determinants and Matrix Manipulations |
|
|
183 | (26) |
|
|
183 | (10) |
|
|
184 | (2) |
|
|
186 | (1) |
|
|
187 | (5) |
|
|
192 | (1) |
|
|
193 | (15) |
|
9.2.1 Elementary Row Operations and Determinants |
|
|
193 | (3) |
|
9.2.2 Code Implementations |
|
|
196 | (5) |
|
9.2.3 Matrix Inverse Calculations |
|
|
201 | (7) |
|
9.3 Back to Definite Matrices |
|
|
208 | (1) |
|
III Calculus of Many Variables |
|
|
209 | (108) |
|
|
211 | (40) |
|
|
211 | (2) |
|
|
212 | (1) |
|
|
213 | (4) |
|
10.3 Derivatives for Scalar Functions of n Variables |
|
|
217 | (7) |
|
10.3.1 The Chain Rule for Scalar Functions of n Variables |
|
|
219 | (5) |
|
10.4 Partials and Differentiability |
|
|
224 | (11) |
|
10.4.1 Partials Can Exist but Not be Continuous |
|
|
224 | (5) |
|
10.4.2 Higher Order Partials |
|
|
229 | (2) |
|
10.4.3 When Do Mixed Partials Match? |
|
|
231 | (4) |
|
10.5 Derivatives for Vector Functions of n Variables |
|
|
235 | (5) |
|
10.5.1 The Chain Rule for Vector-Valued Functions |
|
|
238 | (2) |
|
|
240 | (6) |
|
10.6.1 The Mean Value Theorem |
|
|
241 | (1) |
|
10.6.2 Hessian Approximations |
|
|
242 | (4) |
|
10.7 A Specific Coordinate Transformation |
|
|
246 | (5) |
|
|
249 | (2) |
|
11 Multivariate Extremal Theory |
|
|
251 | (12) |
|
11.1 Differentiability and Extremals |
|
|
251 | (1) |
|
11.2 Second Order Extremal Conditions |
|
|
252 | (11) |
|
11.2.1 Positive and Negative Definite Hessians |
|
|
253 | (4) |
|
11.2.2 Expressing Conditions in Terms of Partials |
|
|
257 | (6) |
|
12 The Inverse and Implicit Function Theorems |
|
|
263 | (28) |
|
|
263 | (6) |
|
12.2 Invertibility Results |
|
|
269 | (7) |
|
|
274 | (2) |
|
12.3 Implicit Function Results |
|
|
276 | (8) |
|
|
282 | (2) |
|
12.4 Constrained Optimization |
|
|
284 | (7) |
|
12.4.1 What Does the Lagrange Multiplier Mean? |
|
|
287 | (2) |
|
|
289 | (2) |
|
13 Linear Approximation Applications |
|
|
291 | (26) |
|
13.1 Linear Approximations to Nonlinear ODE |
|
|
291 | (5) |
|
|
291 | (5) |
|
13.2 Finite Difference Approximations in PDE |
|
|
296 | (6) |
|
13.2.1 First Order Approximations |
|
|
297 | (3) |
|
13.2.2 Second Order Approximations |
|
|
300 | (1) |
|
|
301 | (1) |
|
|
302 | (9) |
|
|
306 | (4) |
|
|
310 | (1) |
|
|
311 | (6) |
|
|
314 | (3) |
|
|
317 | (114) |
|
14 Integration in Multiple Dimensions |
|
|
319 | (32) |
|
14.1 The Darboux Integral |
|
|
319 | (12) |
|
|
331 | (1) |
|
14.2 The Riemann Integral in n Dimensions |
|
|
331 | (4) |
|
|
334 | (1) |
|
14.3 Volume Zero and Measure Zero |
|
|
335 | (5) |
|
|
335 | (4) |
|
|
339 | (1) |
|
14.4 When is a Function Riemann Integrate? |
|
|
340 | (5) |
|
|
345 | (1) |
|
14.5 Integration and Sets of Measure Zero |
|
|
345 | (6) |
|
|
347 | (4) |
|
15 Change of Variables and Fubini's Theorem |
|
|
351 | (20) |
|
|
351 | (5) |
|
|
355 | (1) |
|
15.2 The Change of Variable Theorem |
|
|
356 | (5) |
|
|
360 | (1) |
|
|
361 | (10) |
|
15.3.1 Fubini on a Rectangle |
|
|
362 | (7) |
|
|
369 | (2) |
|
|
371 | (34) |
|
|
371 | (6) |
|
|
375 | (2) |
|
16.2 Conservative Force Fields |
|
|
377 | (3) |
|
|
379 | (1) |
|
|
380 | (5) |
|
|
383 | (2) |
|
|
385 | (8) |
|
|
390 | (3) |
|
16.5 Green's Theorem for Images of the Unit Square |
|
|
393 | (6) |
|
|
396 | (3) |
|
16.6 Motivational Notation |
|
|
399 | (6) |
|
|
400 | (5) |
|
|
405 | (26) |
|
|
405 | (12) |
|
|
410 | (3) |
|
17.1.2 What is a Winding Number? |
|
|
413 | (4) |
|
17.2 Exact and Closed 1-Forms |
|
|
417 | (8) |
|
17.2.1 Smooth Segmented Paths |
|
|
421 | (4) |
|
|
425 | (6) |
|
|
431 | (56) |
|
18 The Exponential Matrix |
|
|
433 | (32) |
|
18.1 The Exponential Matrix |
|
|
434 | (1) |
|
18.2 The Jordan Canonical Form |
|
|
435 | (6) |
|
|
440 | (1) |
|
18.3 Exponential Matrix Calculations |
|
|
441 | (9) |
|
18.3.1 Jordan Block Matrices |
|
|
444 | (2) |
|
|
446 | (2) |
|
|
448 | (2) |
|
18.4 Applications to Linear ODE |
|
|
450 | (8) |
|
18.4.1 The Homogeneous Solution |
|
|
452 | (4) |
|
|
456 | (2) |
|
18.5 The Non-Homogeneous Solution |
|
|
458 | (3) |
|
|
460 | (1) |
|
18.6 A Diagonalizable Test Problem |
|
|
461 | (2) |
|
|
462 | (1) |
|
18.7 Simple Jordan Blocks |
|
|
463 | (2) |
|
|
464 | (1) |
|
19 Nonlinear Parametric Optimization Theory |
|
|
465 | (22) |
|
19.1 The More Precise and Careful Way |
|
|
466 | (3) |
|
19.2 Unconstrained Parametric Optimization |
|
|
469 | (3) |
|
19.3 Constrained Parametric Optimization |
|
|
472 | (12) |
|
19.3.1 Hessian Error Estimates |
|
|
473 | (3) |
|
19.3.2 A First Look at Constraint Satisfaction |
|
|
476 | (1) |
|
19.3.3 Constraint Satisfaction and the Implicit Function Theorem |
|
|
477 | (7) |
|
19.4 Lagrange Multipliers |
|
|
484 | (3) |
|
|
487 | (16) |
|
|
489 | (14) |
|
|
503 | (4) |
|
|
507 | |