|
|
|
|
3 | (48) |
|
1.1 Introduction of Ferrous Extractive Metallurgy |
|
|
3 | (1) |
|
|
4 | (15) |
|
|
5 | (2) |
|
|
7 | (11) |
|
|
18 | (1) |
|
|
18 | (1) |
|
1.2.5 Problem of Indian's Raw Materials |
|
|
19 | (1) |
|
1.3 Agglomeration Processes |
|
|
19 | (23) |
|
|
20 | (4) |
|
|
24 | (6) |
|
|
30 | (1) |
|
|
31 | (1) |
|
1.3.5 New Feed Material (Iron Ore-Coal Composite Pellet) |
|
|
32 | (2) |
|
1.3.6 Testing of Agglomerates |
|
|
34 | (8) |
|
|
42 | (1) |
|
|
43 | (4) |
|
|
47 | (1) |
|
|
48 | (3) |
|
|
51 | (18) |
|
2.1 Outline of Blast Furnace Process |
|
|
51 | (1) |
|
2.2 Constructional Features of BF |
|
|
52 | (4) |
|
2.3 Temperature Profile of BF |
|
|
56 | (1) |
|
2.4 Function of Charged Materials in BF |
|
|
57 | (1) |
|
2.5 Charging System of BF |
|
|
58 | (9) |
|
2.5.1 Two-Bell Charging System |
|
|
58 | (4) |
|
2.5.2 Bell-Less Top (BLT) System |
|
|
62 | (5) |
|
2.6 Size of Charge Particles |
|
|
67 | (1) |
|
|
68 | (1) |
|
|
68 | (1) |
|
3 Blast Furnace Reactions |
|
|
69 | (44) |
|
3.1 Blast Furnace Reactions |
|
|
69 | (7) |
|
3.1.1 Tuyere Reactions or Combustion Zone Reactions |
|
|
69 | (2) |
|
3.1.2 Reactions in the Stack |
|
|
71 | (2) |
|
|
73 | (2) |
|
|
75 | (1) |
|
|
76 | (2) |
|
|
77 | (1) |
|
3.3 Modern Concept of BF Process |
|
|
78 | (3) |
|
3.3.1 Lumpy or Granular Zone |
|
|
79 | (1) |
|
3.3.2 Softening and Melting Zone |
|
|
80 | (1) |
|
3.3.3 Dripping (or Dropping) Zone |
|
|
80 | (1) |
|
|
81 | (1) |
|
|
81 | (1) |
|
3.4 Direct and Indirect Reduction |
|
|
81 | (1) |
|
3.5 Tuyere Flame Temperature (TFT) |
|
|
82 | (1) |
|
3.6 Raceway Adiabatic Flame Temperature (RAFT) |
|
|
82 | (2) |
|
3.7 Modern Trends of BF Practice |
|
|
84 | (10) |
|
3.7.1 Large Capacity of Furnaces |
|
|
85 | (1) |
|
|
85 | (1) |
|
3.7.3 Better Distribution of Burden |
|
|
86 | (1) |
|
|
86 | (1) |
|
3.7.5 Oxygen Enrichment of Blast |
|
|
86 | (1) |
|
3.7.6 Humidification of Blast |
|
|
87 | (1) |
|
3.7.7 Auxiliary Fuel Injection |
|
|
88 | (1) |
|
3.7.8 Pulverized Coal Injection (PCI) |
|
|
89 | (4) |
|
|
93 | (1) |
|
|
93 | (1) |
|
3.8 Transfer of Silicon and Sulphur |
|
|
94 | (1) |
|
|
95 | (1) |
|
|
96 | (2) |
|
|
98 | (1) |
|
|
99 | (11) |
|
|
110 | (1) |
|
|
111 | (2) |
|
|
113 | (12) |
|
|
113 | (6) |
|
|
113 | (1) |
|
4.1.2 Primary Cleaning or Wet-Cleaning |
|
|
114 | (2) |
|
|
116 | (2) |
|
|
118 | (1) |
|
4.1.5 Comparing of Dry- and Wet-Cleaning |
|
|
118 | (1) |
|
|
119 | (2) |
|
4.3 Blast Furnace Control |
|
|
121 | (1) |
|
4.3.1 Control of Temperature |
|
|
121 | (1) |
|
4.3.2 Control of Composition |
|
|
122 | (1) |
|
4.4 BF Cooling Arrangements |
|
|
122 | (1) |
|
|
123 | (1) |
|
|
124 | (1) |
|
5 Operation of Blast Furnace |
|
|
125 | (10) |
|
5.1 Operation of the Furnace |
|
|
125 | (2) |
|
|
125 | (1) |
|
|
126 | (1) |
|
|
127 | (1) |
|
5.2 Operational Problems of BF |
|
|
127 | (1) |
|
|
127 | (1) |
|
|
128 | (1) |
|
|
128 | (1) |
|
|
128 | (1) |
|
|
128 | (2) |
|
|
130 | (1) |
|
|
130 | (5) |
|
Part II Alternate Methods of Ironmaking |
|
|
|
6 Raw Materials for DR Processes |
|
|
135 | (14) |
|
|
135 | (1) |
|
|
135 | (4) |
|
6.2.1 Characteristics of Iron Ore |
|
|
135 | (4) |
|
|
139 | (3) |
|
|
140 | (1) |
|
|
140 | (1) |
|
6.3.3 Volatile Matter and Sulphur Content |
|
|
141 | (1) |
|
6.3.4 Coking and Swelling Indices |
|
|
142 | (1) |
|
|
142 | (3) |
|
|
142 | (3) |
|
|
145 | (1) |
|
6.6 Sizes of Raw Materials |
|
|
145 | (1) |
|
|
146 | (1) |
|
|
146 | (1) |
|
|
147 | (2) |
|
|
149 | (50) |
|
7.1 Introduction of Sponge Iron |
|
|
149 | (1) |
|
7.2 Definition of Sponge Iron |
|
|
149 | (1) |
|
7.3 Sponge Iron Processes |
|
|
150 | (3) |
|
7.3.1 Coal-Based Processes |
|
|
150 | (2) |
|
7.3.2 Gas-Based Processes |
|
|
152 | (1) |
|
|
153 | (2) |
|
|
153 | (1) |
|
|
154 | (1) |
|
|
155 | (11) |
|
7.5.1 Rotary Kiln Process |
|
|
155 | (7) |
|
7.5.2 Rotary Hearth Process |
|
|
162 | (4) |
|
|
166 | (9) |
|
|
166 | (3) |
|
|
169 | (5) |
|
|
174 | (1) |
|
|
174 | (1) |
|
|
175 | (1) |
|
|
175 | (3) |
|
7.7.1 Cold Sponge Iron/DRI (CDRI) |
|
|
177 | (1) |
|
7.7.2 Hot Sponge Iron/DRI (HDRI) |
|
|
177 | (1) |
|
7.7.3 Hot Briquetted Iron (HBI) |
|
|
177 | (1) |
|
7.8 Characteristics of Sponge Iron |
|
|
178 | (2) |
|
|
179 | (1) |
|
|
179 | (1) |
|
|
179 | (1) |
|
7.8.4 Impurities and Residual Elements |
|
|
180 | (1) |
|
7.9 Quality of Sponge Iron |
|
|
180 | (1) |
|
7.10 Re-oxidation of Sponge Iron |
|
|
180 | (4) |
|
7.10.1 Preventive Measures |
|
|
182 | (2) |
|
|
184 | (4) |
|
7.11.1 Use of Sponge Iron/DRI in BF |
|
|
184 | (1) |
|
7.11.2 Use of Sponge Iron/DRI in LD/BOF |
|
|
185 | (1) |
|
7.11.3 Use of Sponge Iron/DRI in EAF |
|
|
186 | (1) |
|
7.11.4 Use of Sponge Iron/DRI in IMF |
|
|
187 | (1) |
|
7.12 Environmental Benefits of Sponge Iron/DRI |
|
|
188 | (1) |
|
|
189 | (1) |
|
|
190 | (1) |
|
|
190 | (7) |
|
|
197 | (1) |
|
|
197 | (2) |
|
8 Smelting Reduction Processes |
|
|
199 | (28) |
|
8.1 Need of Smelting Reduction |
|
|
199 | (3) |
|
8.1.1 Why Are Smelting Reduction Processes Required? |
|
|
201 | (1) |
|
8.2 Significance of Smelting Reduction |
|
|
202 | (1) |
|
8.3 Principle of SR Processes |
|
|
202 | (1) |
|
8.4 Classification of SR Processes |
|
|
203 | (2) |
|
8.4.1 Processes Utilizing Coal and Electricity |
|
|
203 | (1) |
|
8.4.2 Processes Utilizing Oxygen and Coal |
|
|
204 | (1) |
|
8.5 Advantages of Smelting Reduction Processes |
|
|
205 | (2) |
|
8.6 Limitations of Smelting Reduction Processes |
|
|
207 | (1) |
|
8.7 Major Smelting Reduction (SR) Processes |
|
|
207 | (18) |
|
|
208 | (4) |
|
|
212 | (3) |
|
|
215 | (1) |
|
|
215 | (4) |
|
|
219 | (1) |
|
|
220 | (3) |
|
|
223 | (2) |
|
|
225 | (1) |
|
|
225 | (2) |
|
|
227 | (14) |
|
|
227 | (2) |
|
|
229 | (1) |
|
9.3 Charcoal Blast Furnace |
|
|
230 | (2) |
|
9.4 Electrothermal Process |
|
|
232 | (2) |
|
|
234 | (3) |
|
|
237 | (1) |
|
|
237 | (1) |
|
|
237 | (4) |
|
Part III Physical Chemistry of Ironmaking |
|
|
|
10 Thermodynamics of Reduction |
|
|
241 | (30) |
|
10.1 Reduction of Metal Oxide |
|
|
241 | (2) |
|
10.2 Phase Stability Diagrams |
|
|
243 | (4) |
|
|
243 | (2) |
|
|
245 | (2) |
|
10.3 Reduction of Iron Oxides |
|
|
247 | (6) |
|
10.3.1 Reduction by Carbon Monoxide |
|
|
249 | (3) |
|
10.3.2 Reduction by CO and H2 Mixtures |
|
|
252 | (1) |
|
|
253 | (7) |
|
10.4.1 Gas Concentration Within Stack of BF |
|
|
253 | (1) |
|
|
254 | (1) |
|
|
255 | (5) |
|
10.5 Carbon Deposition on Sponge Iron |
|
|
260 | (1) |
|
10.6 Mechanism of Smelting Reduction of Iron Oxides |
|
|
261 | (1) |
|
|
262 | (1) |
|
|
263 | (4) |
|
|
267 | (2) |
|
|
269 | (2) |
|
|
271 | (22) |
|
|
271 | (8) |
|
11.1.1 Interfacial Reaction Control |
|
|
271 | (3) |
|
11.1.2 Kinetics of Solid-Solid Reaction |
|
|
274 | (4) |
|
11.1.3 Reduction of Iron Oxides by CO and H2 |
|
|
278 | (1) |
|
11.2 Gasification of Carbon |
|
|
279 | (3) |
|
|
282 | (1) |
|
|
282 | (7) |
|
|
289 | (1) |
|
|
290 | (3) |
|
|
|
12 Historical Steelmaking |
|
|
293 | (14) |
|
12.1 Introduction of Steelmaking |
|
|
293 | (1) |
|
|
294 | (2) |
|
12.2.1 Wrought Ironmaking |
|
|
294 | (1) |
|
12.2.2 Cementation Process |
|
|
295 | (1) |
|
|
295 | (1) |
|
|
296 | (1) |
|
12.4 Various Steelmaking Routes |
|
|
297 | (2) |
|
12.5 Sources of Heat in Steelmaking |
|
|
299 | (1) |
|
|
300 | (2) |
|
|
302 | (2) |
|
|
304 | (1) |
|
12.8.1 Difference Between Cast Iron and Steel |
|
|
304 | (1) |
|
12.8.2 Difference Between Plain Carbon Steel and Alloy Steel |
|
|
304 | (1) |
|
12.8.3 Difference Between Alloy Steel and Ferro-Alloy |
|
|
304 | (1) |
|
|
304 | (1) |
|
|
305 | (2) |
|
13 Raw Materials for Steelmaking |
|
|
307 | (14) |
|
|
307 | (1) |
|
13.2 Sources of Metallic Iron |
|
|
307 | (5) |
|
13.2.1 Primary Sources of Metallic Iron |
|
|
307 | (1) |
|
13.2.2 Secondary Sources of Metallic Iron |
|
|
308 | (4) |
|
|
312 | (1) |
|
13.3.1 Deoxidizers and Alloy Additions |
|
|
312 | (1) |
|
|
313 | (1) |
|
|
313 | (1) |
|
|
314 | (1) |
|
13.6.1 Heat Balance of Steelmaking Process |
|
|
314 | (1) |
|
13.7 Pre-treatment of Hot Metal |
|
|
315 | (4) |
|
|
315 | (1) |
|
|
316 | (1) |
|
13.7.3 De-phosphorization |
|
|
317 | (2) |
|
13.7.4 Advantages of Pre-treatment to Hot Metal |
|
|
319 | (1) |
|
|
319 | (1) |
|
|
319 | (2) |
|
|
321 | (22) |
|
14.1 Acid Bessemer Process |
|
|
321 | (4) |
|
|
322 | (2) |
|
|
324 | (1) |
|
|
324 | (1) |
|
14.2 Basic Bessemer Process |
|
|
325 | (2) |
|
|
325 | (1) |
|
|
326 | (1) |
|
|
326 | (1) |
|
|
326 | (1) |
|
|
327 | (7) |
|
|
328 | (1) |
|
|
328 | (2) |
|
|
330 | (1) |
|
|
330 | (2) |
|
14.3.5 Modification of Open-Hearth Furnace |
|
|
332 | (2) |
|
|
334 | (1) |
|
|
335 | (5) |
|
|
340 | (1) |
|
|
341 | (2) |
|
15 Oxygen Steelmaking Processes |
|
|
343 | (58) |
|
|
343 | (23) |
|
15.1.1 Design of Converter |
|
|
344 | (2) |
|
|
346 | (1) |
|
|
346 | (6) |
|
15.1.4 Mechanism of Refining |
|
|
352 | (2) |
|
15.1.5 Characteristic of Slag |
|
|
354 | (1) |
|
15.1.6 Mechanism of Carbon Reaction |
|
|
354 | (2) |
|
15.1.7 Manganese Reaction |
|
|
356 | (2) |
|
15.1.8 Phosphorous Reaction |
|
|
358 | (1) |
|
|
359 | (1) |
|
15.1.10 Control of Carbon and Phosphorus Reactions |
|
|
360 | (1) |
|
15.1.11 Process Controlling Factors |
|
|
360 | (2) |
|
15.1.12 Economics of Process |
|
|
362 | (1) |
|
15.1.13 Operating Results/Performance |
|
|
362 | (1) |
|
15.1.14 Lining of Converter |
|
|
363 | (2) |
|
15.1.15 Pollution Control |
|
|
365 | (1) |
|
15.2 Oxygen Bottom Blowing Processes |
|
|
366 | (5) |
|
|
367 | (3) |
|
|
370 | (1) |
|
|
371 | (2) |
|
15.4 Rotary Oxygen Processes |
|
|
373 | (2) |
|
|
374 | (1) |
|
|
375 | (1) |
|
15.5 New Developments in Oxygen Steelmaking Processes |
|
|
375 | (11) |
|
15.5.1 Mixing by Inert Gas Through Porous Bricks |
|
|
377 | (3) |
|
15.5.2 Mixing by Inert Gas Through Tuyeres |
|
|
380 | (2) |
|
15.5.3 Combined Blowing Processes |
|
|
382 | (4) |
|
|
386 | (2) |
|
|
388 | (9) |
|
|
397 | (2) |
|
|
399 | (2) |
|
16 Electric Furnace Processes |
|
|
401 | (96) |
|
16.1 Introduction of Electric Furnaces |
|
|
401 | (3) |
|
16.2 Electric Arc Furnace |
|
|
404 | (21) |
|
|
405 | (7) |
|
|
412 | (7) |
|
|
419 | (6) |
|
16.3 Further Developments in EAF |
|
|
425 | (10) |
|
|
426 | (3) |
|
16.3.2 Process Modifications |
|
|
429 | (1) |
|
16.3.3 Charge Modifications |
|
|
430 | (5) |
|
|
435 | (4) |
|
|
436 | (1) |
|
|
437 | (1) |
|
|
437 | (1) |
|
16.4.4 Difference Between AC and DC |
|
|
438 | (1) |
|
16.5 Induction Melting Furnace (IMF) |
|
|
439 | (7) |
|
|
440 | (1) |
|
|
440 | (1) |
|
16.5.3 Electromotive Force |
|
|
441 | (1) |
|
|
442 | (1) |
|
|
443 | (1) |
|
16.5.6 Merit and Limitation |
|
|
443 | (2) |
|
16.5.7 Difference Between EAF Versus IMF |
|
|
445 | (1) |
|
|
446 | (1) |
|
16.6 Quality Steel Production by Using Sponge Iron |
|
|
446 | (6) |
|
|
447 | (1) |
|
|
448 | (2) |
|
16.6.3 Mechanism of Nitrogen Removal |
|
|
450 | (1) |
|
16.6.4 Product Characteristics |
|
|
451 | (1) |
|
16.6.5 Advantages of Using Sponge Iron in EAF |
|
|
451 | (1) |
|
16.7 Use of Hot Metal in EAF |
|
|
452 | (12) |
|
|
454 | (2) |
|
|
456 | (3) |
|
|
459 | (2) |
|
|
461 | (1) |
|
|
461 | (1) |
|
16.7.6 Shaft Furnace Technology |
|
|
462 | (2) |
|
16.8 Stainless Steel Production |
|
|
464 | (10) |
|
|
464 | (1) |
|
|
465 | (1) |
|
|
466 | (2) |
|
16.8.4 New De-carburization Techniques |
|
|
468 | (6) |
|
16.8.5 Stainless Steel Production by IMF |
|
|
474 | (1) |
|
|
474 | (1) |
|
|
475 | (18) |
|
|
493 | (3) |
|
|
496 | (1) |
|
|
497 | (40) |
|
17.1 Introduction of Secondary Steelmaking |
|
|
497 | (1) |
|
|
498 | (2) |
|
|
499 | (1) |
|
17.3 De-gassing Processes |
|
|
500 | (16) |
|
17.3.1 Gases in Liquid Steel |
|
|
500 | (2) |
|
|
502 | (14) |
|
17.4 Injection Ladle Metallurgy |
|
|
516 | (5) |
|
17.4.1 Submerge Injection Through Lance |
|
|
517 | (1) |
|
17.4.2 Cored Wire Injection |
|
|
517 | (3) |
|
17.4.3 Efficiency of Calcium |
|
|
520 | (1) |
|
17.5 De-oxidation of Steel |
|
|
521 | (4) |
|
17.5.1 Precipitation De-oxidation |
|
|
521 | (3) |
|
17.5.2 Diffusion De-oxidation |
|
|
524 | (1) |
|
17.6 Inclusion and Its Control |
|
|
525 | (5) |
|
17.6.1 Classification of Non-metallic Inclusions |
|
|
525 | (4) |
|
|
529 | (1) |
|
|
530 | (1) |
|
|
531 | (4) |
|
|
535 | (1) |
|
|
536 | (1) |
|
|
537 | (14) |
|
18.1 Introduction of Casting Pit Practice |
|
|
537 | (1) |
|
|
537 | (1) |
|
|
538 | (1) |
|
|
539 | (1) |
|
18.5 Solidification of Steel |
|
|
540 | (2) |
|
|
540 | (1) |
|
18.5.2 Semi-killed Steels |
|
|
541 | (1) |
|
|
541 | (1) |
|
|
541 | (1) |
|
18.5.5 Mechanism of Solidification |
|
|
541 | (1) |
|
|
542 | (5) |
|
|
542 | (1) |
|
|
543 | (1) |
|
18.6.3 Columnar Structure |
|
|
544 | (1) |
|
|
544 | (1) |
|
18.6.5 Non-metallic Inclusions |
|
|
544 | (1) |
|
18.6.6 Internal Rupture and Hairline Cracking |
|
|
545 | (1) |
|
|
546 | (1) |
|
|
547 | (2) |
|
|
549 | (1) |
|
|
549 | (2) |
|
19 Continuous Casting (CONCAST) |
|
|
551 | (24) |
|
19.1 Introduction of CONCAST |
|
|
551 | (1) |
|
19.2 Equipments for CONCAST |
|
|
552 | (2) |
|
|
552 | (1) |
|
|
552 | (1) |
|
|
553 | (1) |
|
19.2.4 False Bottom or Dummy Plug Bar |
|
|
553 | (1) |
|
|
553 | (1) |
|
|
554 | (1) |
|
|
554 | (1) |
|
|
555 | (1) |
|
|
556 | (5) |
|
19.5.1 Powder Consumption |
|
|
559 | (2) |
|
|
561 | (1) |
|
|
561 | (1) |
|
19.7 Improvements of CONCAST |
|
|
562 | (4) |
|
19.7.1 Remotely Adjustable Moulds (RAM) |
|
|
562 | (1) |
|
19.7.2 Ladle Slag Detection System |
|
|
562 | (1) |
|
19.7.3 Submerged Entry Nozzle (SEN) |
|
|
562 | (2) |
|
19.7.4 Electromagnetic Stirring (EMS) |
|
|
564 | (1) |
|
19.7.5 Electromagnetic Brakers (EMBR) |
|
|
564 | (1) |
|
19.7.6 Argon Purging Through Tundish Mono-Block Stopper (MBS) |
|
|
565 | (1) |
|
19.8 Quality Control in CONCAST |
|
|
566 | (2) |
|
|
566 | (1) |
|
19.8.2 Chemical Homogeneity |
|
|
566 | (1) |
|
19.8.3 Porosity and Cracks |
|
|
566 | (1) |
|
|
567 | (1) |
|
19.9 Further Developments of CONCAST Practices |
|
|
568 | (4) |
|
19.9.1 Near-Net-Shape (NNS) Casting |
|
|
569 | (1) |
|
19.9.2 Horizontal Continuous Casting (HCC) |
|
|
570 | (1) |
|
19.9.3 Direct Rolling (ISP and CSP) |
|
|
570 | (2) |
|
|
572 | (1) |
|
|
572 | (3) |
|
Part V Thermodynamics and Physical Chemistry of Steelmaking |
|
|
|
|
575 | (50) |
|
20.1 Physical Chemistry of Steelmaking |
|
|
575 | (2) |
|
20.1.1 Oxidizing Power of Slag |
|
|
576 | (1) |
|
20.1.2 Sulphide Capacity of Slag |
|
|
577 | (1) |
|
20.2 Fundamental Thermodynamic Relations |
|
|
577 | (3) |
|
20.2.1 Carbon in Iron-Carbon Alloys |
|
|
577 | (1) |
|
|
578 | (2) |
|
20.3 Thermodynamics of Refining |
|
|
580 | (17) |
|
20.3.1 Carbon-Oxygen Equilibrium Reaction |
|
|
580 | (5) |
|
|
585 | (1) |
|
20.3.3 Manganese Reaction |
|
|
586 | (4) |
|
20.3.4 Phosphorous Reaction |
|
|
590 | (4) |
|
|
594 | (3) |
|
20.4 Thermodynamics of De-oxidation of Steel |
|
|
597 | (3) |
|
20.4.1 Thermodynamics for Oxygen in Molten Steel |
|
|
597 | (2) |
|
20.4.2 De-oxidation Equilibrium |
|
|
599 | (1) |
|
20.5 Thermodynamics of De-sulphurization |
|
|
600 | (3) |
|
20.6 Thermodynamics of Chromium Reactions |
|
|
603 | (4) |
|
20.7 Thermodynamics of Vacuum Degassing |
|
|
607 | (7) |
|
20.7.1 Hydrogen During Vacuum |
|
|
607 | (1) |
|
20.7.2 Nitrogen During Vacuum |
|
|
608 | (1) |
|
20.7.3 Oxygen During Vacuum |
|
|
609 | (2) |
|
20.7.4 De-sulphurization During Vacuum |
|
|
611 | (3) |
|
|
614 | (1) |
|
|
614 | (6) |
|
|
620 | (1) |
|
|
621 | (4) |
|
Part VI Pollution in Iron and Steel Industries |
|
|
|
21 Carbon Foot Prints for Iron and Steel Production |
|
|
625 | (10) |
|
|
625 | (1) |
|
21.2 Iron and Steel Sector |
|
|
626 | (2) |
|
21.3 Estimation of C02 Emissions |
|
|
628 | (5) |
|
|
628 | (4) |
|
|
632 | (1) |
|
21.4 Product and by-Product |
|
|
633 | (1) |
|
|
633 | (1) |
|
|
634 | (1) |
|
|
634 | (1) |
Appendix A Ellingham Diagram |
|
635 | (2) |
Appendix B Physical Properties of Metals |
|
637 | (2) |
Appendix C Standard Free Energy Change for Some Important Reactions AG°T |
|
639 | (2) |
Appendix D Free Energy and Enthalpy Values for Some Important Reactions |
|
641 | (2) |
Appendix E Free Energy Values for Some Reactions |
|
643 | |