Muutke küpsiste eelistusi

E-raamat: Basic Concepts of Iron and Steel Making

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 02-Mar-2020
  • Kirjastus: Springer Verlag, Singapore
  • Keel: eng
  • ISBN-13: 9789811524370
  • Formaat - EPUB+DRM
  • Hind: 92,01 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 02-Mar-2020
  • Kirjastus: Springer Verlag, Singapore
  • Keel: eng
  • ISBN-13: 9789811524370

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book presents the fundamentals of iron and steel making, including the physical chemistry, thermodynamics and key concepts, while also discussing associated problems and solutions. It guides the reader through the production process from start to finish, covers the raw materials, and addresses the types of processes and reactions involved in both conventional and alternative methods. Though primarily intended as a textbook for students of metallurgical engineering, the book will also prove a useful reference for professionals and researchers working in this area.
Part I Ironmaking
1 Raw Materials
3(48)
1.1 Introduction of Ferrous Extractive Metallurgy
3(1)
1.2 Raw Materials
4(15)
1.2.1 Iron Ore
5(2)
1.2.2 Metallurgical Coke
7(11)
1.2.3 Fluxes
18(1)
1.2.4 Air Supply
18(1)
1.2.5 Problem of Indian's Raw Materials
19(1)
1.3 Agglomeration Processes
19(23)
1.3.1 Sintering
20(4)
1.3.2 Pelletization
24(6)
1.3.3 Briquetting
30(1)
1.3.4 Nodulizing
31(1)
1.3.5 New Feed Material (Iron Ore-Coal Composite Pellet)
32(2)
1.3.6 Testing of Agglomerates
34(8)
Probable Questions
42(1)
Examples
43(4)
Problems
47(1)
References
48(3)
2 Blast Furnace Process
51(18)
2.1 Outline of Blast Furnace Process
51(1)
2.2 Constructional Features of BF
52(4)
2.3 Temperature Profile of BF
56(1)
2.4 Function of Charged Materials in BF
57(1)
2.5 Charging System of BF
58(9)
2.5.1 Two-Bell Charging System
58(4)
2.5.2 Bell-Less Top (BLT) System
62(5)
2.6 Size of Charge Particles
67(1)
Probable Questions
68(1)
References
68(1)
3 Blast Furnace Reactions
69(44)
3.1 Blast Furnace Reactions
69(7)
3.1.1 Tuyere Reactions or Combustion Zone Reactions
69(2)
3.1.2 Reactions in the Stack
71(2)
3.1.3 Bosh Reactions
73(2)
3.1.4 Hearth Reactions
75(1)
3.2 Slag
76(2)
3.2.1 BFSlag
77(1)
3.3 Modern Concept of BF Process
78(3)
3.3.1 Lumpy or Granular Zone
79(1)
3.3.2 Softening and Melting Zone
80(1)
3.3.3 Dripping (or Dropping) Zone
80(1)
3.3.4 Raceway Zone
81(1)
3.3.5 Hearth Zone
81(1)
3.4 Direct and Indirect Reduction
81(1)
3.5 Tuyere Flame Temperature (TFT)
82(1)
3.6 Raceway Adiabatic Flame Temperature (RAFT)
82(2)
3.7 Modern Trends of BF Practice
84(10)
3.7.1 Large Capacity of Furnaces
85(1)
3.7.2 Burden Preparation
85(1)
3.7.3 Better Distribution of Burden
86(1)
3.7.4 Blast Temperature
86(1)
3.7.5 Oxygen Enrichment of Blast
86(1)
3.7.6 Humidification of Blast
87(1)
3.7.7 Auxiliary Fuel Injection
88(1)
3.7.8 Pulverized Coal Injection (PCI)
89(4)
3.7.9 Lime Injection
93(1)
3.7.10 High Top Pressure
93(1)
3.8 Transfer of Silicon and Sulphur
94(1)
3.9 Aerodynamics
95(1)
3.10 BF Productivity
96(2)
Probable Questions
98(1)
Examples
99(11)
Problems
110(1)
References
111(2)
4 Furnace Auxiliaries
113(12)
4.1 Cleaning of BF Gas
113(6)
4.1.1 Dust Catcher
113(1)
4.1.2 Primary Cleaning or Wet-Cleaning
114(2)
4.1.3 Secondary Cleaning
116(2)
4.1.4 Dry-Cleaning
118(1)
4.1.5 Comparing of Dry- and Wet-Cleaning
118(1)
4.2 Hot Blast Stoves
119(2)
4.3 Blast Furnace Control
121(1)
4.3.1 Control of Temperature
121(1)
4.3.2 Control of Composition
122(1)
4.4 BF Cooling Arrangements
122(1)
Probable Questions
123(1)
References
124(1)
5 Operation of Blast Furnace
125(10)
5.1 Operation of the Furnace
125(2)
5.1.1 Blowing In
125(1)
5.1.2 Banking
126(1)
5.1.3 Blowing Out
127(1)
5.2 Operational Problems of BF
127(1)
5.2.1 Hot Spots
127(1)
5.2.2 Scaffolding
128(1)
5.2.3 Slipping
128(1)
5.2.4 Breakouts
128(1)
5.3 BF Refractory
128(2)
Probable Questions
130(1)
References
130(5)
Part II Alternate Methods of Ironmaking
6 Raw Materials for DR Processes
135(14)
6.1 Introduction
135(1)
6.2 Iron Ore
135(4)
6.2.1 Characteristics of Iron Ore
135(4)
6.3 Coal
139(3)
6.3.1 Reactivity
140(1)
6.3.2 Ash Content
140(1)
6.3.3 Volatile Matter and Sulphur Content
141(1)
6.3.4 Coking and Swelling Indices
142(1)
6.4 Natural Gas
142(3)
6.4.1 Reforming Reaction
142(3)
6.5 Other Raw Materials
145(1)
6.6 Sizes of Raw Materials
145(1)
6.7 Composite Pellets
146(1)
Probable Questions
146(1)
References
147(2)
7 Sponge Iron
149(50)
7.1 Introduction of Sponge Iron
149(1)
7.2 Definition of Sponge Iron
149(1)
7.3 Sponge Iron Processes
150(3)
7.3.1 Coal-Based Processes
150(2)
7.3.2 Gas-Based Processes
152(1)
7.4 Reactions
153(2)
7.4.1 Coal-Based
153(1)
7.4.2 Gas-Based
154(1)
7.5 Coal-Based Processes
155(11)
7.5.1 Rotary Kiln Process
155(7)
7.5.2 Rotary Hearth Process
162(4)
7.6 Gas-Based Processes
166(9)
7.6.1 Midrex Process
166(3)
7.6.2 HyL Process
169(5)
7.6.3 Purofer Process
174(1)
7.6.4 FLNMET Process
174(1)
7.6.5 HTB Process
175(1)
7.7 Forms of Sponge Iron
175(3)
7.7.1 Cold Sponge Iron/DRI (CDRI)
177(1)
7.7.2 Hot Sponge Iron/DRI (HDRI)
177(1)
7.7.3 Hot Briquetted Iron (HBI)
177(1)
7.8 Characteristics of Sponge Iron
178(2)
7.8.1 Metallization
179(1)
7.8.2 Carbon Content
179(1)
7.8.3 Gangue Content
179(1)
7.8.4 Impurities and Residual Elements
180(1)
7.9 Quality of Sponge Iron
180(1)
7.10 Re-oxidation of Sponge Iron
180(4)
7.10.1 Preventive Measures
182(2)
7.11 Use of Sponge Iron
184(4)
7.11.1 Use of Sponge Iron/DRI in BF
184(1)
7.11.2 Use of Sponge Iron/DRI in LD/BOF
185(1)
7.11.3 Use of Sponge Iron/DRI in EAF
186(1)
7.11.4 Use of Sponge Iron/DRI in IMF
187(1)
7.12 Environmental Benefits of Sponge Iron/DRI
188(1)
7.13 Iron Carbide
189(1)
Probable Questions
190(1)
Examples
190(7)
Problems
197(1)
References
197(2)
8 Smelting Reduction Processes
199(28)
8.1 Need of Smelting Reduction
199(3)
8.1.1 Why Are Smelting Reduction Processes Required?
201(1)
8.2 Significance of Smelting Reduction
202(1)
8.3 Principle of SR Processes
202(1)
8.4 Classification of SR Processes
203(2)
8.4.1 Processes Utilizing Coal and Electricity
203(1)
8.4.2 Processes Utilizing Oxygen and Coal
204(1)
8.5 Advantages of Smelting Reduction Processes
205(2)
8.6 Limitations of Smelting Reduction Processes
207(1)
8.7 Major Smelting Reduction (SR) Processes
207(18)
8.7.1 Corex Process
208(4)
8.7.2 Romelt Process
212(3)
8.7.3 DIOS Process
215(1)
8.7.4 HIsmelt Process
215(4)
8.7.5 Auslron Process
219(1)
8.7.6 FINEX Process
220(3)
8.7.7 FASTMELT Process
223(2)
Probable Questions
225(1)
References
225(2)
9 Alternate Ironmaking
227(14)
9.1 Low Shaft Furnace
227(2)
9.2 Mini-blast Furnace
229(1)
9.3 Charcoal Blast Furnace
230(2)
9.4 Electrothermal Process
232(2)
9.5 ELRED Process
234(3)
9.6 KR Process
237(1)
Probable Questions
237(1)
References
237(4)
Part III Physical Chemistry of Ironmaking
10 Thermodynamics of Reduction
241(30)
10.1 Reduction of Metal Oxide
241(2)
10.2 Phase Stability Diagrams
243(4)
10.2.1 Fe-C-O System
243(2)
10.2.2 Fe-H-O System
245(2)
10.3 Reduction of Iron Oxides
247(6)
10.3.1 Reduction by Carbon Monoxide
249(3)
10.3.2 Reduction by CO and H2 Mixtures
252(1)
10.4 Reaction in BF
253(7)
10.4.1 Gas Concentration Within Stack of BF
253(1)
10.4.2 Raceway Zone
254(1)
10.4.3 Bosh and Hearth
255(5)
10.5 Carbon Deposition on Sponge Iron
260(1)
10.6 Mechanism of Smelting Reduction of Iron Oxides
261(1)
Probable Questions
262(1)
Examples
263(4)
Problems
267(2)
References
269(2)
11 Kinetics
271(22)
11.1 Reduction by Gases
271(8)
11.1.1 Interfacial Reaction Control
271(3)
11.1.2 Kinetics of Solid-Solid Reaction
274(4)
11.1.3 Reduction of Iron Oxides by CO and H2
278(1)
11.2 Gasification of Carbon
279(3)
Probable Questions
282(1)
Examples
282(7)
Problems
289(1)
References
290(3)
Part IV Meelmaking
12 Historical Steelmaking
293(14)
12.1 Introduction of Steelmaking
293(1)
12.2 Earlier Processes
294(2)
12.2.1 Wrought Ironmaking
294(1)
12.2.2 Cementation Process
295(1)
12.2.3 Crucible Process
295(1)
12.3 Modern Steelmaking
296(1)
12.4 Various Steelmaking Routes
297(2)
12.5 Sources of Heat in Steelmaking
299(1)
12.6 Slag
300(2)
12.7 Ternary Diagram
302(2)
12.8 Basic Differences
304(1)
12.8.1 Difference Between Cast Iron and Steel
304(1)
12.8.2 Difference Between Plain Carbon Steel and Alloy Steel
304(1)
12.8.3 Difference Between Alloy Steel and Ferro-Alloy
304(1)
Probable Questions
304(1)
References
305(2)
13 Raw Materials for Steelmaking
307(14)
13.1 Raw Materials
307(1)
13.2 Sources of Metallic Iron
307(5)
13.2.1 Primary Sources of Metallic Iron
307(1)
13.2.2 Secondary Sources of Metallic Iron
308(4)
13.3 Oxidizing Agents
312(1)
13.3.1 Deoxidizers and Alloy Additions
312(1)
13.4 Fluxes
313(1)
13.5 Furnace Refractory
313(1)
13.6 Sources of Heat
314(1)
13.6.1 Heat Balance of Steelmaking Process
314(1)
13.7 Pre-treatment of Hot Metal
315(4)
13.7.1 De-siliconization
315(1)
13.7.2 De-sulphurization
316(1)
13.7.3 De-phosphorization
317(2)
13.7.4 Advantages of Pre-treatment to Hot Metal
319(1)
Probable Questions
319(1)
References
319(2)
14 Steelmaking Processes
321(22)
14.1 Acid Bessemer Process
321(4)
14.1.1 Refining
322(2)
14.1.2 Air Blowing
324(1)
14.1.3 Heat Balance
324(1)
14.2 Basic Bessemer Process
325(2)
14.2.1 Refining
325(1)
14.2.2 Air Blowing
326(1)
14.2.3 Heat Balance
326(1)
14.2.4 Limitations
326(1)
14.3 Open-Hearth Process
327(7)
14.3.1 Charging
328(1)
14.3.2 Melting
328(2)
14.3.3 Refining
330(1)
14.3.4 Finishing
330(2)
14.3.5 Modification of Open-Hearth Furnace
332(2)
Probable Questions
334(1)
Examples
335(5)
Problems
340(1)
References
341(2)
15 Oxygen Steelmaking Processes
343(58)
15.1 LD Process
343(23)
15.1.1 Design of Converter
344(2)
15.1.2 Lance
346(1)
15.1.3 Oxygen Lancing
346(6)
15.1.4 Mechanism of Refining
352(2)
15.1.5 Characteristic of Slag
354(1)
15.1.6 Mechanism of Carbon Reaction
354(2)
15.1.7 Manganese Reaction
356(2)
15.1.8 Phosphorous Reaction
358(1)
15.1.9 Sulphur Reaction
359(1)
15.1.10 Control of Carbon and Phosphorus Reactions
360(1)
15.1.11 Process Controlling Factors
360(2)
15.1.12 Economics of Process
362(1)
15.1.13 Operating Results/Performance
362(1)
15.1.14 Lining of Converter
363(2)
15.1.15 Pollution Control
365(1)
15.2 Oxygen Bottom Blowing Processes
366(5)
15.2.1 OBM
367(3)
15.2.2 LWS
370(1)
15.3 LD-AC/OLP
371(2)
15.4 Rotary Oxygen Processes
373(2)
15.4.1 Kaldo Process
374(1)
15.4.2 Rotor Process
375(1)
15.5 New Developments in Oxygen Steelmaking Processes
375(11)
15.5.1 Mixing by Inert Gas Through Porous Bricks
377(3)
15.5.2 Mixing by Inert Gas Through Tuyeres
380(2)
15.5.3 Combined Blowing Processes
382(4)
Probable Questions
386(2)
Examples
388(9)
Problems
397(2)
References
399(2)
16 Electric Furnace Processes
401(96)
16.1 Introduction of Electric Furnaces
401(3)
16.2 Electric Arc Furnace
404(21)
16.2.1 Main Parts of EAF
405(7)
16.2.2 Process
412(7)
16.2.3 Design of Furnace
419(6)
16.3 Further Developments in EAF
425(10)
16.3.1 Design Aspect
426(3)
16.3.2 Process Modifications
429(1)
16.3.3 Charge Modifications
430(5)
16.4 DC Arc Furnace
435(4)
16.4.1 Principle
436(1)
16.4.2 Charging
437(1)
16.4.3 Operation
437(1)
16.4.4 Difference Between AC and DC
438(1)
16.5 Induction Melting Furnace (IMF)
439(7)
16.5.1 Principle
440(1)
16.5.2 Raw Materials
440(1)
16.5.3 Electromotive Force
441(1)
16.5.4 Cooling System
442(1)
16.5.5 Operation
443(1)
16.5.6 Merit and Limitation
443(2)
16.5.7 Difference Between EAF Versus IMF
445(1)
16.5.8 Applications
446(1)
16.6 Quality Steel Production by Using Sponge Iron
446(6)
16.6.1 Charging
447(1)
16.6.2 Melting
448(2)
16.6.3 Mechanism of Nitrogen Removal
450(1)
16.6.4 Product Characteristics
451(1)
16.6.5 Advantages of Using Sponge Iron in EAF
451(1)
16.7 Use of Hot Metal in EAF
452(12)
16.7.1 CONARC Process
454(2)
16.7.2 EOF Process
456(3)
16.7.3 ECOARC Process
459(2)
16.7.4 CONSTEEL Process
461(1)
16.7.5 FASTEEL Process
461(1)
16.7.6 Shaft Furnace Technology
462(2)
16.8 Stainless Steel Production
464(10)
16.8.1 Earlier Method
464(1)
16.8.2 Rustless Process
465(1)
16.8.3 Rapid Process
466(2)
16.8.4 New De-carburization Techniques
468(6)
16.8.5 Stainless Steel Production by IMF
474(1)
Probable Questions
474(1)
Examples
475(18)
Problems
493(3)
References
496(1)
17 Secondary Steelmaking
497(40)
17.1 Introduction of Secondary Steelmaking
497(1)
17.2 Ladle Furnace (LF)
498(2)
17.2.1 ASEA-SKF Furnace
499(1)
17.3 De-gassing Processes
500(16)
17.3.1 Gases in Liquid Steel
500(2)
17.3.2 Vacuum De-gassing
502(14)
17.4 Injection Ladle Metallurgy
516(5)
17.4.1 Submerge Injection Through Lance
517(1)
17.4.2 Cored Wire Injection
517(3)
17.4.3 Efficiency of Calcium
520(1)
17.5 De-oxidation of Steel
521(4)
17.5.1 Precipitation De-oxidation
521(3)
17.5.2 Diffusion De-oxidation
524(1)
17.6 Inclusion and Its Control
525(5)
17.6.1 Classification of Non-metallic Inclusions
525(4)
17.6.2 Inclusion Control
529(1)
Probable Questions
530(1)
Examples
531(4)
Problems
535(1)
References
536(1)
18 Casting Pit Practice
537(14)
18.1 Introduction of Casting Pit Practice
537(1)
18.2 Teeming Ladle
537(1)
18.3 Ingot Mould
538(1)
18.4 Hot Top
539(1)
18.5 Solidification of Steel
540(2)
18.5.1 Killed Steels
540(1)
18.5.2 Semi-killed Steels
541(1)
18.5.3 Rimming Steels
541(1)
18.5.4 Capped Steels
541(1)
18.5.5 Mechanism of Solidification
541(1)
18.6 Ingot Defects
542(5)
18.6.1 Pipe Formation
542(1)
18.6.2 Blow Holes
543(1)
18.6.3 Columnar Structure
544(1)
18.6.4 Segregation
544(1)
18.6.5 Non-metallic Inclusions
544(1)
18.6.6 Internal Rupture and Hairline Cracking
545(1)
18.6.7 Surface Defects
546(1)
18.7 Teeming Methods
547(2)
Probable Questions
549(1)
References
549(2)
19 Continuous Casting (CONCAST)
551(24)
19.1 Introduction of CONCAST
551(1)
19.2 Equipments for CONCAST
552(2)
19.2.1 Ladle
552(1)
19.2.2 Tundish
552(1)
19.2.3 Mould
553(1)
19.2.4 False Bottom or Dummy Plug Bar
553(1)
19.2.5 Withdrawal Rolls
553(1)
19.2.6 Cooling Sprays
554(1)
19.3 Principle
554(1)
19.4 Types of Casters
555(1)
19.5 Mould Powder
556(5)
19.5.1 Powder Consumption
559(2)
19.5.2 Slag Films
561(1)
19.6 Merits of CONCAST
561(1)
19.7 Improvements of CONCAST
562(4)
19.7.1 Remotely Adjustable Moulds (RAM)
562(1)
19.7.2 Ladle Slag Detection System
562(1)
19.7.3 Submerged Entry Nozzle (SEN)
562(2)
19.7.4 Electromagnetic Stirring (EMS)
564(1)
19.7.5 Electromagnetic Brakers (EMBR)
564(1)
19.7.6 Argon Purging Through Tundish Mono-Block Stopper (MBS)
565(1)
19.8 Quality Control in CONCAST
566(2)
19.8.1 Cleanliness
566(1)
19.8.2 Chemical Homogeneity
566(1)
19.8.3 Porosity and Cracks
566(1)
19.8.4 Desired Shape
567(1)
19.9 Further Developments of CONCAST Practices
568(4)
19.9.1 Near-Net-Shape (NNS) Casting
569(1)
19.9.2 Horizontal Continuous Casting (HCC)
570(1)
19.9.3 Direct Rolling (ISP and CSP)
570(2)
Probable Questions
572(1)
References
572(3)
Part V Thermodynamics and Physical Chemistry of Steelmaking
20 Thermodynamics
575(50)
20.1 Physical Chemistry of Steelmaking
575(2)
20.1.1 Oxidizing Power of Slag
576(1)
20.1.2 Sulphide Capacity of Slag
577(1)
20.2 Fundamental Thermodynamic Relations
577(3)
20.2.1 Carbon in Iron-Carbon Alloys
577(1)
20.2.2 Oxygen in Iron
578(2)
20.3 Thermodynamics of Refining
580(17)
20.3.1 Carbon-Oxygen Equilibrium Reaction
580(5)
20.3.2 Silicon Reaction
585(1)
20.3.3 Manganese Reaction
586(4)
20.3.4 Phosphorous Reaction
590(4)
20.3.5 Sulphur Reaction
594(3)
20.4 Thermodynamics of De-oxidation of Steel
597(3)
20.4.1 Thermodynamics for Oxygen in Molten Steel
597(2)
20.4.2 De-oxidation Equilibrium
599(1)
20.5 Thermodynamics of De-sulphurization
600(3)
20.6 Thermodynamics of Chromium Reactions
603(4)
20.7 Thermodynamics of Vacuum Degassing
607(7)
20.7.1 Hydrogen During Vacuum
607(1)
20.7.2 Nitrogen During Vacuum
608(1)
20.7.3 Oxygen During Vacuum
609(2)
20.7.4 De-sulphurization During Vacuum
611(3)
Probable Questions
614(1)
Examples
614(6)
Problems
620(1)
References
621(4)
Part VI Pollution in Iron and Steel Industries
21 Carbon Foot Prints for Iron and Steel Production
625(10)
21.1 Introduction
625(1)
21.2 Iron and Steel Sector
626(2)
21.3 Estimation of C02 Emissions
628(5)
21.3.1 One Method
628(4)
21.3.2 Another Methods
632(1)
21.4 Product and by-Product
633(1)
21.5 Summaries
633(1)
Probable Questions
634(1)
References
634(1)
Appendix A Ellingham Diagram 635(2)
Appendix B Physical Properties of Metals 637(2)
Appendix C Standard Free Energy Change for Some Important Reactions AG°T 639(2)
Appendix D Free Energy and Enthalpy Values for Some Important Reactions 641(2)
Appendix E Free Energy Values for Some Reactions 643
Sujay Kumar Dutta is a former Professor and Head of the Department of Metallurgical & Materials Engineering at Maharaja Sayajirao University of Baroda, India. He received his Bachelor of Engineering (Metallurgy) from Calcutta University in 1975 and his Master of Engineering (Industrial Metallurgy) from MS University of Baroda in 1980. He completed his PhD at the Indian Institute of Technology, Kanpur, India, in 1992. He joined MS University of Baroda as a Lecturer in 1981 and was promoted to Professor in 2001. Prof. Dutta has received several awards, including an Essar Gold Medal (2006), a Fellowship (2014) and a Distinguished Educator Award (2015), all from the Indian Institute of Metals (IIM), Kolkata, in recognition of his distinguished service to the field of Metallurgical Education and to the IIM. He has authored of five books, two chapters of Encyclopedia of Iron, Steel, and Their Alloys, and published more than 120 research papers in national/international journals and conference proceedings. Very recently Prof. Dutta was awarded SAIL Award 2019 by The Institution of Engineers (India). Yakshil B. Chokshi is a Lecturer at the Department of Metallurgy, Government Polytechnic Rajkot, India. He received his BE in Metallurgical & Materials Engineering from Gujarat University in 2010 and his ME in Industrial Metallurgy from MS University of Baroda in 2012.