Muutke küpsiste eelistusi

E-raamat: Basic Mathematics for Economists

(Coventry University, London, UK),
  • Formaat: 608 pages
  • Ilmumisaeg: 28-Apr-2016
  • Kirjastus: Routledge
  • Keel: eng
  • ISBN-13: 9781317280835
  • Formaat - EPUB+DRM
  • Hind: 97,10 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 608 pages
  • Ilmumisaeg: 28-Apr-2016
  • Kirjastus: Routledge
  • Keel: eng
  • ISBN-13: 9781317280835

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Basic Mathematics for Economists, now in its 3rd edition, is a classic of its genre and this new edition builds on the success of previous editions. Suitable for students who may only have a basic mathematics background, as well as students who may have followed more advanced mathematics courses but who still want a clear explanation of fundamental concepts, this book covers all the basic tenets required for an understanding of mathematics and how it is applied in economics, finance and business.

Starting with revisions of the essentials of arithmetic and algebra, students are then taken through to more advanced topics in calculus, comparative statics, dynamic analysis, and matrix algebra, with all topics explained in the context of relevant applications,

New features in this third edition reflect the increased emphasis on finance in many economics and related degree courses, with fuller analysis of topics such as:











savings and pension schemes, including draw down pensions





asset valuation techniques for bond and share prices





the application of integration to concepts in economics and finance





input-output analysis, using spreadsheets to do matrix algebra calculations

In developing new topics the book never loses sight of their applied context and examples are always used to help explain analysis. This book is the most logical, user-friendly book on the market and is usable for mathematics of economics, finance and business courses in all countries.

Arvustused

This book is my go-to-guide for my intermediate microeconomics class. The author is able to explain well mathematical concepts which result in an extraordinary support to improve the mathematical ability of my students. Gloria L. Bernal, Assistant Professor, Economics Department at Pontificia Universidad Javeriana, Columbia

Preface x
Preface to second edition xi
Preface to third edition xii
Acknowledgements xii
1 Introduction
1(7)
1.1 Why study mathematics?
1(2)
1.2 Calculators and computers
3(2)
1.3 Using this book
5(3)
2 Arithmetic
8(24)
2.1 Revision of basic concepts
8(1)
2.2 Multiple operations
9(2)
2.3 Brackets
11(1)
2.4 Fractions
12(3)
2.5 Elasticity of demand
15(3)
2.6 Decimals
18(3)
2.7 Negative numbers
21(2)
2.8 Powers
23(2)
2.9 Roots and fractional powers
25(3)
2.10 Logarithms
28(4)
3 Introduction to algebra
32(31)
3.1 Representation
32(3)
3.2 Evaluation
35(2)
3.3 Simplification: addition and subtraction
37(2)
3.4 Simplification: multiplication
39(4)
3.5 Simplification: factorizing
43(4)
3.6 Simplification: division
47(2)
3.7 Solving simple equations
49(5)
3.8 The summation sign S and price indexes
54(5)
3.9 Inequality signs
59(4)
4 Graphs and functions
63(44)
4.1 Functions
63(3)
4.2 Inverse functions
66(2)
4.3 Graphs of linear functions
68(5)
4.4 Fitting linear functions
73(3)
4.5 Slope
76(5)
4.6 Budget constraints
81(5)
4.7 Non-linear functions
86(2)
4.8 Composite functions
88(5)
4.9 Using a spreadsheet to plot functions
93(4)
4.10 Functions with two independent variables
97(5)
4.11 Summing functions horizontally
102(5)
5 Simultaneous linear equations
107(61)
5.1 Systems of simultaneous linear equations
107(1)
5.2 Solving simultaneous linear equations
108(1)
5.3 Graphical solution
108(2)
5.4 Equating to same variable
110(2)
5.5 Substitution
112(2)
5.6 Row operations
114(2)
5.7 More than two unknowns
116(3)
5.8 Which method?
119(5)
5.9 Comparative statics and the reduced form of an economic model
124(9)
5.10 Price discrimination
133(7)
5.11 Multiplant monopoly
140(28)
5A Appendix: linear programming
148(1)
5A.1 Constrained maximization
148(10)
5A.2 Constrained minimization
158(7)
5A.3 Mixed constraints
165(2)
5A.4 More than two variables
167(1)
6 Quadratic equations
168(21)
6.1 Solving quadratic equations
168(2)
6.2 Graphical solution
170(4)
6.3 Factorization
174(2)
6.4 The quadratic formula
176(1)
6.5 Quadratic simultaneous equations
177(5)
6.6 Polynomials
182(7)
7 Financial mathematics -- series, time and investment
189(91)
7.1 Discrete and continuous growth
189(2)
7.2 Interest
191(5)
7.3 Part year investment and the annual equivalent rate
196(6)
7.4 Time periods, initial amounts and interest rates
202(5)
7.5 Investment appraisal: net present value
207(10)
7.6 The internal rate of return
217(7)
7.7 Geometric series and annuities
224(6)
7.8 Perpetual annuities
230(4)
7.9 Pension pots, annuity income and drawdown pensions
234(8)
7.10 Drawdown pension income
242(2)
7.11 Loan repayments and mortgages
244(8)
7.12 Savings schemes
252(5)
7.13 Sinking fund savings schemes
257(3)
7.14 Other applications of growth and decline
260(20)
7A Appendix: asset valuation
267(1)
7A.1 Valuation of bonds
267(6)
7A.2 Valuation of shares
273(7)
8 Introduction to calculus
280(25)
8.1 Differential calculus
280(2)
8.2 Rules for differentiation
282(4)
8.3 Marginal revenue and total revenue
286(5)
8.4 Marginal cost and total cost
291(2)
8.5 Profit maximization
293(2)
8.6 Re-specifying functions
295(2)
8.7 Point elasticity of demand
297(3)
8.8 Tax yield
300(3)
8.9 The Keynesian multiplier
303(2)
9 Unconstrained optimization
305(21)
9.1 First-order conditions for a maximum
305(1)
9.2 Second-order conditions for a maximum
306(3)
9.3 Second-order conditions for a minimum
309(1)
9.4 Summary of second-order conditions
310(3)
9.5 Profit maximization
313(3)
9.6 Inventory control
316(4)
9.7 Comparative static effects of taxes
320(6)
10 Partial differentiation
326(48)
10.1 Partial differentiation and the marginal product
326(6)
10.2 Further applications of partial differentiation
332(12)
10.3 Second-order partial derivatives
344(5)
10.4 Unconstrained optimization: functions with two variables
349(15)
10.5 Total differentials and total derivatives
364(10)
11 Constrained optimization
374(33)
11.1 Constrained optimization and resource allocation
374(1)
11.2 Constrained optimization by substitution
375(8)
11.3 The Lagrange multiplier: constrained maximization with two variables
383(6)
11.4 The Lagrange multiplier: second-order conditions
389(3)
11.5 Constrained minimization using the Lagrange multiplier
392(6)
11.6 Constrained optimization with more than two variables
398(9)
12 Further topics in differentiation and integration
407(42)
12.1 Overview
407(1)
12.2 The chain rule
407(9)
12.3 The product rule
416(6)
12.4 The quotient rule
422(7)
12.5 Integration
429(6)
12.6 Definite integrals
435(7)
12.7 Integration by substitution and integration by parts
442(7)
13 Dynamics and difference equations
449(39)
13.1 Dynamic economic analysis
449(1)
13.2 The cobweb: iterative solutions
450(10)
13.3 The cobweb: difference equation solutions
460(10)
13.4 The lagged Keynesian macroeconomic model
470(12)
13.5 Duopoly price adjustment
482(6)
14 Exponential functions, continuous growth and differential equations
488(38)
14.1 Continuous growth and the exponential function
488(3)
14.2 Accumulated final values after continuous growth
491(3)
14.3 Continuous growth rates and initial amounts
494(5)
14.4 Natural logarithms
499(5)
14.5 Differentiation of logarithmic functions
504(2)
14.6 Continuous time and differential equations
506(1)
14.7 Solution of homogeneous differential equations
507(4)
14.8 Solution of non-homogeneous differential equations
511(5)
14.9 Continuous adjustment of market price
516(5)
14.10 Continuous adjustment in a Keynesian macroeconomic model
521(5)
15 Matrix algebra
526(63)
15.1 Introduction to matrices and vectors
526(5)
15.2 Basic principles of matrix multiplication
531(3)
15.3 Matrix multiplication -- the general case
534(6)
15.4 The matrix inverse and the solution of simultaneous equations
540(4)
15.5 Determinants
544(3)
15.6 Minors, cofactors and the Laplace expansion
547(4)
15.7 The transpose matrix, the cofactor matrix, the adjoint and the matrix inverse formula
551(5)
15.8 Application of the matrix inverse to the solution of linear simultaneous equations
556(6)
15.9 Cramer's rule
562(2)
15.10 Second-order conditions and the Hessian matrix
564(7)
15.11 Constrained optimization and the bordered Hessian
571(4)
15.12 Input-output analysis
575(6)
15.13 Multiple industry input-output models
581(8)
Answers 589(11)
Index 600
Mike Rosser is a former Principal Lecturer in Economics at Coventry University, UK.



Piotr Lis is a Senior Lecturer in Economics at Coventry University, UK.