Muutke küpsiste eelistusi

E-raamat: Basic Prediction Techniques in Modern Video Coding Standards

  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book discusses in detail the basic algorithms of video compression that are widely used in modern video codec. The authors dissect complicated specifications and present material in a way that gets readers quickly up to speed by describing video compression algorithms succinctly, without going to the mathematical details and technical specifications. For accelerated learning, hybrid codec structure, inter- and intra- prediction techniques in MPEG-4, H.264/AVC, and HEVC are discussed together. In addition, the latest research in the fast encoder design for the HEVC and H.264/AVC is also included.

Introduction.- Hybrid video codec structure.- Intra Prediction.- Inter Prediction.- Rate distortion cost optimization.- Fast Prediction Techniques.- Conclusion.
1 Introduction
1(12)
1.1 Background and Need for Video Compression
1(1)
1.2 Classifications of the Redundancies
2(3)
1.2.1 Statistical Redundancy
2(3)
1.2.2 Psycho-Visual Redundancy
5(1)
1.3 Hybrid Video Codec
5(3)
1.4 Brief History About Compression Standards
8(2)
1.5 About This Book
10(3)
References
11(2)
2 Hybrid Video Codec Structure
13(18)
2.1 Picture Partitioning
13(3)
2.1.1 High-Level Picture Partitioning
13(3)
2.2 Block Partitioning
16(7)
2.2.1 H.264/AVC Block Partitioning
17(1)
2.2.2 HEVC Block Partitioning
18(5)
2.3 Prediction Modes
23(1)
2.4 In-Loop Filters
23(5)
2.4.1 Deblocking Filter
23(2)
2.4.2 Sample Adaptive Offset
25(3)
2.5 Entropy Coding
28(3)
2.5.1 Huffman Coding
28(1)
2.5.2 Arithmetic Coding
29(1)
2.5.3 CAB AC
30(1)
3 Intra-prediction Techniques
31(8)
3.1 Background
31(1)
3.2 Intra-prediction Modes in H.264/AVC
32(2)
3.3 Intra-prediction Modes in HEVC
34(3)
3.3.1 Angular Prediction
34(2)
3.3.2 DC and Planer Prediction
36(1)
3.3.3 Reference Sample Smoothing and Boundary Value Smoothing
37(1)
3.4 Lossless Intra-prediction Using DPCM
37(2)
References
38(1)
4 Inter-prediction Techniques
39(14)
4.1 Motion Estimation
39(3)
4.2 Uni- and Bidirectional Predictions
42(2)
4.3 Complexity in the Inter-prediction
44(2)
4.4 Different Inter-prediction Modes
46(2)
4.5 Merge and Skip Modes
48(2)
4.6 Motion Vector Prediction
50(3)
5 RD Cost Optimization
53(10)
5.1 Background
53(1)
5.2 Classical Theory of RD Cost
54(1)
5.3 Distortion Measurement Technique
55(2)
5.3.1 Mean of Squared Error
55(1)
5.3.2 Mean of Absolute Difference
56(1)
5.3.3 Sum of Absolute Difference
57(1)
5.4 Calculating A for the RD Cost Function
57(6)
Reference
61(2)
6 Fast Prediction Techniques
63
6.1 Need for the Fast Prediction Algorithms
63(1)
6.2 Fast Options in HEVC Encoder
64(3)
6.2.1 Early CU Termination
64(1)
6.2.2 Early Skip Detection
65(1)
6.2.3 CBF Fast Mode Setting
66(1)
6.2.4 Fast Decision for Merge RD Cost
66(1)
6.3 Block Matching Algorithm
67(3)
6.4 Full Search
70(1)
6.5 Unsymmetrical-Cross Multihexagon-Grid Search
70(1)
6.6 Diamond Search
70(2)
6.7 Enhanced Predictive Zonal Search
72(2)
6.8 Test Zone Search
74(3)
6.9 Fixed Search Patterns
77(1)
6.10 Search Patterns Based on Block Correlation
78(1)
6.11 Search Patterns Based on Motion Classification
79(1)
6.12 Prediction-Based Fast Algorithms
79(2)
6.13 Improved RD Cost-Based Algorithms
81(1)
6.14 Efficient Filter-Based Algorithms
82(1)
6.15 Improved Transform-Based Algorithms
82
References
83
Professor Byung-Gyu Kim received his BS degree from Pusan National University, Korea, in 1996 and an MS degree from Korea Advanced Institute of Science and Technology(KAIST) in 1998. In 2004, he received a Ph.D. degree in the Department of Electrical Engineering and Computer Science from Korea Advanced Institute of Science and Technology (KAIST). In March 2004, he joined in the real-time multimedia research team at the Electronics and Telecommunications Research Institute (ETRI), Korea where he was a senior researcher. In February 2009, he joined the Department of Computer Engineering at SunMoon University, Korea where he is currently a professor. He is also serving as Associate Editor of Circuits, Systems and Signal Processing Journal, Journal of Real-Time Image Processing, Journal of Supercomputing, and other international journals. He has published over 115 international journal and conference papers, patents in his field. His research interests include image and video object segmentation for the content-based image coding, video coding techniques, wireless multimedia sensor network, embedded multimedia communication, and intelligent information system for image signal processing.

Dr. Kalyan Goswami received his B.Tech degree from Kalyani University, India in 2004. From 2004 to 2007 he worked at Cognizant Technology Solutions India Pvt. Ltd., as a programmer analyst. He received a MS degree from Indian Institute of Technology (IIT), Kharagpur, India in 2011 and a Ph.D degree from the Department of Computer Engineering from Sunmoon University, South Korea in 2015. He has published 19 international journal and conference papers in his field. His research interests include video processing, video coding techniques, High Efficiency Video Coding (HEVC), object detection and tracking for video sequences.