|
|
xv | |
Preface to Third Edition |
|
xvii | |
Preface to Second Edition |
|
xix | |
Preface to First Edition |
|
xxi | |
|
|
1 | (78) |
|
|
3 | (16) |
|
|
6 | (13) |
|
2 Bayesian Inference and Modeling |
|
|
19 | (18) |
|
|
19 | (3) |
|
2.1.1 Spatial Correlation |
|
|
20 | (1) |
|
2.1.1.1 Conditional Independence |
|
|
20 | (1) |
|
2.1.1.2 Joint Densities with Correlations |
|
|
20 | (1) |
|
2.1.1.3 Pseudolikelihood Approximation |
|
|
21 | (1) |
|
|
22 | (2) |
|
|
22 | (1) |
|
2.2.2 Non-Informative Priors |
|
|
22 | (2) |
|
2.3 Posterior Distributions |
|
|
24 | (3) |
|
|
25 | (1) |
|
|
25 | (1) |
|
2.3.2.1 Regression Parameters |
|
|
26 | (1) |
|
2.3.2.2 Variance or Precision Parameters |
|
|
26 | (1) |
|
2.3.2.3 Correlation Parameters |
|
|
26 | (1) |
|
|
26 | (1) |
|
2.3.2.5 Correlated Parameters |
|
|
27 | (1) |
|
2.4 Predictive Distributions |
|
|
27 | (1) |
|
2.4.1 Poisson-Gamma Example |
|
|
27 | (1) |
|
2.5 Bayesian Hierarchical Modeling |
|
|
28 | (1) |
|
|
28 | (2) |
|
|
30 | (5) |
|
2.7.1 Bernoulli and Binomial Examples |
|
|
31 | (4) |
|
|
35 | (2) |
|
|
37 | (24) |
|
|
37 | (1) |
|
3.2 Markov Chain Monte Carlo (MCMC) Methods |
|
|
38 | (1) |
|
3.3 Metropolis and Metropolis-Hastings Algorithms |
|
|
39 | (10) |
|
|
40 | (1) |
|
3.3.2 Metropolis-Hastings Updates |
|
|
40 | (1) |
|
|
40 | (1) |
|
3.3.4 Metropolis-Hastings (M-H) versus Gibbs Algorithms |
|
|
41 | (1) |
|
|
42 | (1) |
|
|
42 | (1) |
|
3.3.6.1 Single-Chain Methods |
|
|
43 | (3) |
|
3.3.6.2 Multi-Chain Methods |
|
|
46 | (2) |
|
3.3.7 Subsampling and Thinning |
|
|
48 | (1) |
|
3.3.7.1 Monitoring Metropolis-Like Samplers |
|
|
48 | (1) |
|
|
49 | (1) |
|
3.5 Posterior and Likelihood Approximations |
|
|
50 | (7) |
|
3.5.1 Pseudolikelihood and Other Forms |
|
|
50 | (2) |
|
3.5.2 Asymptotic Approximations |
|
|
52 | (1) |
|
3.5.2.1 Asymptotic Quadratic Form |
|
|
52 | (3) |
|
3.5.2.2 Laplace Integral Approximation |
|
|
55 | (1) |
|
|
55 | (2) |
|
3.6 Alternative Computational Aproaches |
|
|
57 | (1) |
|
3.6.1 Maximum A Posteriori Estimation (MAP) |
|
|
57 | (1) |
|
3.6.2 Iterated Conditional Modes (ICMs) |
|
|
57 | (1) |
|
3.6.3 MC3 and Parallel Tempering |
|
|
57 | (1) |
|
|
58 | (1) |
|
3.6.5 Sequential Monte Carlo |
|
|
58 | (1) |
|
3.7 Approximate Bayesian Computation (ABC) |
|
|
58 | (1) |
|
|
59 | (2) |
|
4 Residuals and Goodness-of-Fit |
|
|
61 | (18) |
|
|
61 | (4) |
|
4.1.1 Deviance Information Criterion |
|
|
62 | (2) |
|
4.1.2 Posterior Predictive Loss |
|
|
64 | (1) |
|
|
65 | (3) |
|
|
68 | (1) |
|
4.4 Predictive Residuals and Bootstrap |
|
|
68 | (2) |
|
4.4.1 Conditional Predictive Ordinates (CPOs.) |
|
|
69 | (1) |
|
4.5 Interpretation of Residuals in a Bayesian Setting |
|
|
70 | (2) |
|
4.6 Pseudo-Bayes Factors and Marginal Predictive Likelihood |
|
|
72 | (1) |
|
|
73 | (1) |
|
4.8 Exceedance Probabilities |
|
|
74 | (1) |
|
|
75 | (4) |
|
|
79 | (304) |
|
5 Disease Map Reconstruction and Relative Risk Estimation |
|
|
81 | (50) |
|
5.1 Introduction to Case Event and Count Likelihoods |
|
|
81 | (5) |
|
5.1.1 Poisson Process Model |
|
|
81 | (2) |
|
5.1.2 Conditional Logistic Model |
|
|
83 | (1) |
|
5.1.3 Binomial Model for Count Data |
|
|
84 | (1) |
|
5.1.4 Poisson Model for Count Data |
|
|
84 | (1) |
|
|
85 | (1) |
|
|
86 | (1) |
|
5.2 Specification of Predictor in Case Event and Count Models |
|
|
86 | (4) |
|
5.2.1 Bayesian Linear Model |
|
|
88 | (2) |
|
5.3 Simple Case and Count Data Models with Uncorrelated Random Effects |
|
|
90 | (4) |
|
5.3.1 Gamma and Beta Models |
|
|
90 | (1) |
|
|
90 | (1) |
|
5.3.1.1.1 Hyperprior Distributions |
|
|
91 | (1) |
|
5.3.1.1.2 Linear Parameterization |
|
|
91 | (1) |
|
|
92 | (1) |
|
5.3.1.2.1 Hyperprior Distributions |
|
|
92 | (1) |
|
5.3.1.2.2 Linear Parameterization |
|
|
92 | (1) |
|
5.3.2 Log-Normal and Logistic-Normal Models |
|
|
93 | (1) |
|
5.4 Correlated Heterogeneity Models |
|
|
94 | (7) |
|
5.4.1 Conditional Autoregressive (CAR) Models |
|
|
95 | (1) |
|
5.4.1.1 Improper CAR (ICAR) Models |
|
|
95 | (2) |
|
5.4.1.2 Proper CAR (PCAR) Models |
|
|
97 | (1) |
|
5.4.1.3 Gaussian Process Convolution (PC) and GCM Models |
|
|
97 | (1) |
|
5.4.1.4 Case Event Models |
|
|
98 | (2) |
|
5.4.2 Fully Specified Covariance Models |
|
|
100 | (1) |
|
|
101 | (3) |
|
5.5.1 Leroux Prior Specification |
|
|
103 | (1) |
|
5.6 Model Comparison and Goodness-of-Fit Diagnostics |
|
|
104 | (3) |
|
5.6.1 Residual Spatial Autocorrelation |
|
|
105 | (2) |
|
5.7 Alternative Risk Models |
|
|
107 | (15) |
|
5.7.1 Autologistic Models |
|
|
107 | (4) |
|
5.7.1.1 Other Auto Models |
|
|
111 | (1) |
|
5.7.2 Spline-Based Models |
|
|
112 | (1) |
|
5.7.3 Zip Regression Models |
|
|
113 | (5) |
|
5.7.4 Ordered and Unordered Multi-Category Data |
|
|
118 | (1) |
|
5.7.5 Latent Structure Models |
|
|
118 | (1) |
|
|
119 | (3) |
|
5.7.6 Quantile Regression |
|
|
122 | (1) |
|
|
122 | (5) |
|
5.8.1 Edge Weighting Schemes and MCMC Methods |
|
|
124 | (1) |
|
5.8.1.0.1 Weighting Systems |
|
|
124 | (2) |
|
5.8.1.1 MCMC and Other Computational Methods |
|
|
126 | (1) |
|
5.8.2 Discussion and Extension to Space-Time |
|
|
126 | (1) |
|
|
127 | (4) |
|
|
127 | (1) |
|
5.9.2 Poisson-Gamma Model: Posterior and Predictive Inference |
|
|
128 | (1) |
|
5.9.3 Poisson-Gamma Model: Empirical Bayes |
|
|
129 | (2) |
|
6 Disease Cluster Detection |
|
|
131 | (32) |
|
|
131 | (3) |
|
6.1.1 Hot Spot Clustering |
|
|
133 | (1) |
|
6.1.2 Clusters as Objects or Groupings |
|
|
133 | (1) |
|
6.1.3 Clusters Defined as Residuals |
|
|
133 | (1) |
|
6.2 Cluster Detection Using Residuals |
|
|
134 | (7) |
|
|
134 | (1) |
|
6.2.1.1 Unconditional Analysis |
|
|
134 | (2) |
|
6.2.1.2 Conditional Logistic Analysis |
|
|
136 | (3) |
|
|
139 | (1) |
|
6.2.2.1 Poisson Likelihood |
|
|
139 | (1) |
|
6.2.2.2 Binomial Likelihood |
|
|
140 | (1) |
|
6.3 Cluster Detection Using Posterior Measures |
|
|
141 | (3) |
|
|
144 | (16) |
|
|
144 | (1) |
|
|
145 | (2) |
|
6.4.1.2 Estimation Issues |
|
|
147 | (3) |
|
6.4.1.3 Data-Dependent Models |
|
|
150 | (1) |
|
6.4.1.3.1 Partition Models and Regression Trees |
|
|
150 | (2) |
|
6.4.1.3.2 Local Likelihood |
|
|
152 | (1) |
|
|
153 | (1) |
|
6.4.2.1 Hidden Process and Object Models |
|
|
153 | (2) |
|
6.4.2.2 Data-Dependent models |
|
|
155 | (1) |
|
6.4.2.2.1 Partition Models and Regression Trees |
|
|
155 | (2) |
|
6.4.2.2.2 Local Likelihood |
|
|
157 | (1) |
|
6.4.3 Markov-Connected Component Field (MCCF) Models |
|
|
158 | (2) |
|
6.5 Edge Detection and Wombling |
|
|
160 | (3) |
|
7 Regression and Ecological Analysis |
|
|
163 | (36) |
|
7.1 Basic Regression Modeling |
|
|
163 | (5) |
|
7.1.1 Linear Predictor Choice |
|
|
163 | (1) |
|
7.1.2 Covariate Centering |
|
|
164 | (1) |
|
7.1.3 Initial Model Fitting |
|
|
165 | (2) |
|
|
167 | (1) |
|
|
168 | (4) |
|
|
169 | (3) |
|
|
172 | (1) |
|
7.3 Non-Linear Predictors |
|
|
172 | (2) |
|
7.4 Confounding and Multi-Colinearity |
|
|
174 | (3) |
|
7.5 Geographically Dependent Regression |
|
|
177 | (3) |
|
|
180 | (2) |
|
7.7 Ecological Analysis: General Case of Regression |
|
|
182 | (6) |
|
7.8 Biases and Misclassification Errors |
|
|
188 | (8) |
|
|
189 | (1) |
|
7.8.1.1 Within-Area Exposure Distribution |
|
|
190 | (2) |
|
7.8.1.2 Measurement Error (ME) |
|
|
192 | (2) |
|
7.8.1.3 Unobserved Confounding and Contextual Effects in Ecological Analysis |
|
|
194 | (2) |
|
7.9 Sample Surveys and Small Area Estimation |
|
|
196 | (3) |
|
7.9.1 Estimation of Aggregate Quantities |
|
|
197 | (2) |
|
8 Putative Hazard Modeling |
|
|
199 | (20) |
|
|
201 | (5) |
|
8.2 Aggregated Count Data |
|
|
206 | (3) |
|
8.3 Spatio-Temporal Effects |
|
|
209 | (10) |
|
|
210 | (3) |
|
|
213 | (6) |
|
9 Multiple Scale Analysis |
|
|
219 | (18) |
|
9.1 Modifiable Areal Unit Problem (MAUP) |
|
|
219 | (6) |
|
|
219 | (2) |
|
|
221 | (1) |
|
9.1.3 Multiscale Analysis |
|
|
221 | (2) |
|
9.1.3.1 Georgia Oral Cancer 2004 Example |
|
|
223 | (2) |
|
9.2 Misaligned Data Problem (MIDP) |
|
|
225 | (12) |
|
9.2.1 Predictor Misalignment |
|
|
226 | (4) |
|
9.2.1.1 Binary Logistic Spatial Example |
|
|
230 | (3) |
|
9.2.2 Outcome Misalignment |
|
|
233 | (1) |
|
9.2.3 Misalignment and Edge Effects |
|
|
234 | (3) |
|
10 Multivariate Disease Analysis |
|
|
237 | (26) |
|
10.1 Notation for Multivariate Analysis |
|
|
237 | (1) |
|
|
237 | (1) |
|
|
238 | (1) |
|
|
238 | (8) |
|
|
238 | (1) |
|
10.2.1.1 Specification of λl1 |
|
|
239 | (1) |
|
|
240 | (2) |
|
10.2.3 Georgia County Level Example Involving Three diseases |
|
|
242 | (4) |
|
|
246 | (17) |
|
|
246 | (5) |
|
|
251 | (2) |
|
10.3.3 Multivariate Spatial Correlation and MCAR Models |
|
|
253 | (1) |
|
10.3.3.1 Multivariate Gaussian Models |
|
|
253 | (3) |
|
|
256 | (1) |
|
10.3.3.3 Linear Model of Coregionalization |
|
|
257 | (1) |
|
10.3.3.4 Model Fitting on WinBUGS |
|
|
258 | (1) |
|
10.3.4 Georgia Chronic Ambulatory Care-Sensitive Example |
|
|
258 | (5) |
|
11 Spatial Survival and Longitudinal Analysis |
|
|
263 | (26) |
|
|
263 | (1) |
|
11.2 Spatial Survival Analysis |
|
|
264 | (6) |
|
11.2.1 Endpoint Distributions |
|
|
264 | (2) |
|
|
266 | (1) |
|
11.2.3 Random Effect Specification |
|
|
266 | (2) |
|
11.2.4 General Hazard Model |
|
|
268 | (1) |
|
|
268 | (1) |
|
|
269 | (1) |
|
11.3 Spatial Longitudinal Analysis |
|
|
270 | (9) |
|
|
273 | (1) |
|
11.3.2 Seizure Data Example |
|
|
273 | (4) |
|
|
277 | (2) |
|
11.4 Extensions to Repeated Events |
|
|
279 | (10) |
|
11.4.1 Simple Repeated Events |
|
|
279 | (1) |
|
11.4.2 More Complex Repeated Events |
|
|
280 | (1) |
|
|
281 | (1) |
|
|
281 | (1) |
|
11.4.2.1.2 Multiple Event Types |
|
|
282 | (1) |
|
11.4.3 Fixed Time Periods |
|
|
283 | (1) |
|
|
284 | (1) |
|
11.4.3.2 Multiple Event Types |
|
|
284 | (1) |
|
11.4.3.2.1 Asthma-Comorbidity Medicaid Example |
|
|
285 | (4) |
|
12 Spatio-Temporal Disease Mapping |
|
|
289 | (18) |
|
|
289 | (2) |
|
|
291 | (8) |
|
12.2.1 Georgia Low Birth Weight Example |
|
|
296 | (3) |
|
|
299 | (8) |
|
12.3.1 Autologistic Models |
|
|
300 | (2) |
|
12.3.2 Spatio-Temporal Leroux Model |
|
|
302 | (1) |
|
12.3.3 Latent Structure Spatial-Temporal (ST) Models |
|
|
302 | (5) |
|
13 Disease Map Surveillance |
|
|
307 | (18) |
|
13.1 Surveillance Concepts |
|
|
307 | (3) |
|
13.1.1 Syndromic Surveillance |
|
|
308 | (1) |
|
13.1.2 Process Control Ideas |
|
|
309 | (1) |
|
13.2 Temporal Surveillance |
|
|
310 | (4) |
|
13.2.1 Single Disease Sequence |
|
|
312 | (1) |
|
13.2.2 Multiple Disease Sequences |
|
|
313 | (1) |
|
13.2.3 Infectious Disease Surveillance |
|
|
313 | (1) |
|
13.3 Spatial and Spatio-Temporal Surveillance |
|
|
314 | (11) |
|
|
315 | (1) |
|
13.3.1.1 Component Identification and Estimation Issues |
|
|
315 | (1) |
|
|
315 | (1) |
|
13.3.1.1.2 Background and Endemicity |
|
|
316 | (1) |
|
13.3.2 Prospective Space-Time Analysis |
|
|
317 | (1) |
|
13.3.2.1 An EWMA Approach |
|
|
318 | (1) |
|
13.3.3 Sequential Conditional Predictive Ordinate Approach |
|
|
318 | (4) |
|
13.3.4 Surveillance Kullback Leibler (SKL) Measure |
|
|
322 | (1) |
|
13.3.4.1 Residual-Based Approach |
|
|
323 | (1) |
|
|
324 | (1) |
|
14 Infectious Disease Modeling |
|
|
325 | (26) |
|
14.0.1 Spatial Scale and Ascertainment |
|
|
325 | (1) |
|
14.0.1.1 Asymptomatic Cases |
|
|
326 | (1) |
|
14.0.2 Individual Level Modeling |
|
|
327 | (1) |
|
14.0.3 Aggregate Level Modeling |
|
|
328 | (1) |
|
14.0.4 Poisson or Binomial Approximation |
|
|
328 | (1) |
|
|
329 | (2) |
|
|
329 | (1) |
|
14.1.1.1 Partial Likelihood Formulation in Space-Time |
|
|
329 | (1) |
|
|
330 | (1) |
|
14.2 Mechanistic Count Models |
|
|
331 | (2) |
|
14.2.0.1 South Carolina Influenza Data |
|
|
332 | (1) |
|
14.3 Veterinary Disease Mapping |
|
|
333 | (8) |
|
14.3.0.1 Foot and Mouth Descriptive Data Example |
|
|
336 | (2) |
|
14.3.0.2 Mechanistic Infection Modeling |
|
|
338 | (1) |
|
14.3.0.3 Some Complicating Factors |
|
|
338 | (1) |
|
14.3.1 FMD Mechanistic Count Modeling |
|
|
339 | (1) |
|
14.3.1.1 Susceptible-Infected-Removed (SIR) Models |
|
|
339 | (1) |
|
14.3.1.1.1 Transmission Models |
|
|
339 | (1) |
|
14.3.1.2 Estimation of Termination |
|
|
340 | (1) |
|
|
341 | (10) |
|
|
343 | (1) |
|
|
344 | (4) |
|
14.4.3 Some Modeling Issues for Zoonoses and Infectious Diseases |
|
|
348 | (3) |
|
15 Computational Software Issues |
|
|
351 | (32) |
|
15.1 Graphics on GeoBUGS and R |
|
|
351 | (7) |
|
|
351 | (1) |
|
15.1.2 Handling Polygon Objects |
|
|
352 | (1) |
|
|
352 | (1) |
|
|
353 | (2) |
|
|
355 | (1) |
|
|
355 | (2) |
|
15.1.3 GeoBUGS and Quantum GIS (QGIS) |
|
|
357 | (1) |
|
15.2 Preparing Polygon Objects for WinBUGS, CARBayes or INLA |
|
|
358 | (2) |
|
15.2.1 Adjacencies and Weight Matrices |
|
|
358 | (2) |
|
15.3 Posterior Sampling Algorithms |
|
|
360 | (3) |
|
|
360 | (1) |
|
15.3.1.1 WinBUGS and OpenBUGS |
|
|
361 | (1) |
|
|
362 | (1) |
|
|
363 | (1) |
|
15.4 Alternative Samplers |
|
|
363 | (2) |
|
15.4.1 Hamiltonian MC (HMC) and Langevin Sampling |
|
|
363 | (1) |
|
|
364 | (1) |
|
15.5 Approximate Bayesian Computation (ABC) |
|
|
365 | (1) |
|
15.6 Posterior Approximations |
|
|
366 | (1) |
|
|
367 | (1) |
|
15.7 Comparison of Software for Spatial and Spatio-Temporal Modeling |
|
|
367 | (10) |
|
|
367 | (1) |
|
15.7.1.1 Larynx Cancer Data set, Northwest England |
|
|
367 | (2) |
|
15.7.1.2 Georgia County Level Oral Cancer Incidence, 2004 |
|
|
369 | (5) |
|
15.7.2 Spatio-Temporal Models |
|
|
374 | (3) |
|
15.8 Pros and Cons of Software Packages |
|
|
377 | (6) |
|
|
383 | (1) |
|
Appendix A Basic R, WinBUGS/OpenBUGS |
|
|
383 | (24) |
|
|
383 | (5) |
|
|
383 | (1) |
|
|
384 | (4) |
|
A.2 Use of R in Bayesian Modeling |
|
|
388 | (3) |
|
|
391 | (7) |
|
|
391 | (1) |
|
|
392 | (6) |
|
A.4 R2WinBUGS and R20penBUGS Functions |
|
|
398 | (6) |
|
|
404 | (1) |
|
|
404 | (3) |
|
Appendix B Selected WinBUGS Code |
|
|
407 | (12) |
|
B.1 Code for Convolution Model (Chapter 5) |
|
|
407 | (1) |
|
B.2 Code for Spatial Spline Model (Chapter 5) |
|
|
408 | (1) |
|
B.3 Code for Spatial Autologistic Model (Chapter 6) |
|
|
408 | (1) |
|
B.4 Code for Logistic Spatial Case Control Model (Chapter 6) |
|
|
409 | (1) |
|
B.5 Code for PP Residual Model (Chapter 6) |
|
|
409 | (1) |
|
B.5.1 Same Model with Uncorrelated Random Effect |
|
|
410 | (1) |
|
B.6 Code for Logistic Spatial Case-Control Model (Chapter 6) |
|
|
410 | (2) |
|
B.6.0.1 R2WinBUGS Commands |
|
|
411 | (1) |
|
B.7 Code for Poisson Residual Clustering Example (Chapter 6) |
|
|
412 | (1) |
|
B.8 Code for Proper CAR Model (Chapter 5) |
|
|
412 | (1) |
|
B.9 Code for Multiscale Model for PH and County-Level Data (Chapter 9) |
|
|
413 | (1) |
|
B.10 Code for Shared Component Model for Georgia Asthma and COPD (Chapter 10) |
|
|
414 | (1) |
|
B.11 Code for Seizure Example with Spatial Effect (Chapter 11) |
|
|
415 | (1) |
|
B.12 Code for Knorr-Held Model for Space-Time Relative Risk Estimation (Chapter 12) |
|
|
416 | (1) |
|
B.13 Code for Space-Time Autologistic Model (Chapter 12) |
|
|
416 | (3) |
|
Appendix C R Code for Thematic Mapping |
|
|
419 | (2) |
|
Appendix D CAR Model Examples |
|
|
421 | (2) |
References |
|
423 | (36) |
Index |
|
459 | |