|
|
1 | (10) |
|
|
2 | (2) |
|
|
4 | (1) |
|
|
5 | (2) |
|
|
7 | (4) |
|
|
7 | (4) |
|
|
11 | (16) |
|
2.1 Derivation of the Theorem |
|
|
11 | (2) |
|
|
13 | (2) |
|
2.3 The Concept of Form Invariance |
|
|
15 | (1) |
|
|
16 | (5) |
|
2.5 Improper Distributions |
|
|
21 | (2) |
|
|
23 | (4) |
|
|
23 | (4) |
|
3 Probable and Improbable Data |
|
|
27 | (14) |
|
3.1 The Bayesian Interval |
|
|
27 | (1) |
|
|
28 | (5) |
|
3.2.1 The Central Value of a Gaussian |
|
|
28 | (1) |
|
3.2.2 The Standard Deviation of a Gaussian |
|
|
29 | (4) |
|
|
33 | (3) |
|
3.4 On the Existence of the Bayesian Area |
|
|
36 | (5) |
|
|
38 | (3) |
|
4 Description of Distributions I: Real x |
|
|
41 | (14) |
|
4.1 Gaussian Distributions |
|
|
41 | (9) |
|
4.1.1 The Simple Gaussian |
|
|
41 | (4) |
|
4.1.2 The Multidimensional Gaussian |
|
|
45 | (2) |
|
4.1.3 The Chi-Squared Model |
|
|
47 | (3) |
|
4.2 The Exponential Model |
|
|
50 | (1) |
|
4.3 Student's t-Distribution |
|
|
51 | (4) |
|
|
53 | (2) |
|
5 Description of Distributions II: Natural x |
|
|
55 | (8) |
|
5.1 The Binomial Distribution |
|
|
55 | (3) |
|
5.2 The Multinomial Distribution |
|
|
58 | (1) |
|
5.3 The Poisson Distribution |
|
|
59 | (4) |
|
|
61 | (2) |
|
|
63 | (18) |
|
|
65 | (4) |
|
6.2 The Symmetry of Form Invariance |
|
|
69 | (2) |
|
6.3 The Invariant Measure |
|
|
71 | (2) |
|
6.4 The Geometric Measure |
|
|
73 | (1) |
|
6.5 Form Invariance of the Posterior Distribution |
|
|
74 | (1) |
|
6.6 The Maximum Likelihood Estimator |
|
|
75 | (2) |
|
6.7 The Sufficient Statistic |
|
|
77 | (1) |
|
6.8 An Invariant Version of the Shannon Information |
|
|
78 | (3) |
|
|
79 | (2) |
|
7 Examples of Invariant Measures |
|
|
81 | (10) |
|
7.1 Form Invariance Under Translations |
|
|
81 | (1) |
|
7.2 Form Invariance Under Dilations |
|
|
82 | (1) |
|
7.3 Form Invariance Under the Combination of Translation and Dilation |
|
|
83 | (1) |
|
7.4 A Rotational Invariance |
|
|
84 | (3) |
|
7.5 Special Triangular Matrices |
|
|
87 | (1) |
|
|
87 | (4) |
|
|
90 | (1) |
|
8 A Linear Representation of Form Invariance |
|
|
91 | (12) |
|
8.1 A Vector Space of Functions |
|
|
92 | (1) |
|
8.2 An Orthogonal Transformation of the Function Space |
|
|
93 | (2) |
|
8.3 The Linear Representation of the Symmetry Groups |
|
|
95 | (2) |
|
8.4 The Linear Representation of Translation |
|
|
97 | (1) |
|
8.5 The Linear Representation of Dilation |
|
|
98 | (2) |
|
8.6 Linear Representation of Translation Combined with Dilation |
|
|
100 | (3) |
|
9 Going Beyond Form Invariance: The Geometric Prior |
|
|
103 | (12) |
|
|
103 | (3) |
|
9.2 Geometric Interpretation of the Prior μ |
|
|
106 | (3) |
|
9.3 On the Geometric Prior Distribution |
|
|
109 | (1) |
|
9.4 Examples of Geometric Priors |
|
|
110 | (5) |
|
9.4.1 An Expansion in Terms of Orthogonal Functions |
|
|
110 | (1) |
|
9.4.2 The Multinomial Model |
|
|
111 | (2) |
|
|
113 | (2) |
|
10 Inferring the Mean or the Standard Deviation |
|
|
115 | (12) |
|
10.1 Inferring Both Parameters |
|
|
115 | (6) |
|
10.1.1 Multidimensional Gaussian Approximation to a Posterior Distribution |
|
|
119 | (2) |
|
10.2 Inferring the Mean Only |
|
|
121 | (1) |
|
10.3 Inferring the Standard Deviation Only |
|
|
121 | (1) |
|
10.4 The Argument of Neyman and Scott Against ML Estimation |
|
|
122 | (5) |
|
|
124 | (3) |
|
11 Form Invariance II: Natural x |
|
|
127 | (10) |
|
|
128 | (3) |
|
11.1.1 The Basic Binomial Model |
|
|
128 | (1) |
|
11.1.2 The Binomial Model for N Observations |
|
|
129 | (2) |
|
11.2 The Poisson Model as a Limit of the Binomial Model for >> n |
|
|
131 | (6) |
|
11.2.1 The Prior and Posterior of the Poisson Model |
|
|
131 | (3) |
|
11.2.2 The Poisson Model is Form Invariant |
|
|
134 | (3) |
|
|
137 | (14) |
|
12.1 The Idea of and Some Notions Akin to Item Response Theory |
|
|
138 | (2) |
|
12.2 The Trigonometric Model of Item Response Theory |
|
|
140 | (1) |
|
12.3 Analysing Data with the Trigonometric Model |
|
|
141 | (4) |
|
12.3.1 The Guttman Scheme |
|
|
141 | (1) |
|
12.3.2 A Monte Carlo Game |
|
|
142 | (3) |
|
12.4 The Statistical Errors of the ML Estimators of Item Response Theory |
|
|
145 | (6) |
|
|
149 | (2) |
|
|
151 | (16) |
|
|
151 | (1) |
|
13.2 The Chi-Squared Criterion |
|
|
152 | (3) |
|
13.3 A Histogram of Counts |
|
|
155 | (5) |
|
13.4 The Absolute Shannon Information |
|
|
160 | (7) |
|
13.4.1 Definition of the Absolute Shannon Information |
|
|
160 | (1) |
|
13.4.2 The Shannon Information Conveyed by a Chi-Squared Distribution |
|
|
161 | (2) |
|
13.4.3 Assigning Effective Numbers of Freedom |
|
|
163 | (2) |
|
|
165 | (2) |
|
|
167 | (6) |
|
14.1 The Starting Points of the Present Book |
|
|
167 | (1) |
|
|
168 | (1) |
|
|
169 | (4) |
|
|
172 | (1) |
Appendix A Problems and Solutions |
|
173 | (34) |
Appendix B Description of Distributions I: Real x |
|
207 | (8) |
Appendix C Form Invariance I |
|
215 | (4) |
Appendix D Beyond Form Invariance: The Geometric Prior |
|
219 | (6) |
Appendix E Inferring Mean or Standard Deviation |
|
225 | (2) |
Appendix F Form Invariance II: Natural x |
|
227 | (2) |
Appendix G Item Response Theory |
|
229 | (6) |
Appendix H On the Art of Fitting |
|
235 | (6) |
Index |
|
241 | |