Muutke küpsiste eelistusi

E-raamat: Bayesian Model Comparison

Edited by , Edited by
  • Formaat: EPUB+DRM
  • Sari: Advances in Econometrics
  • Ilmumisaeg: 21-Nov-2014
  • Kirjastus: Emerald Group Publishing Limited
  • Keel: eng
  • ISBN-13: 9781784411848
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 141,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Advances in Econometrics
  • Ilmumisaeg: 21-Nov-2014
  • Kirjastus: Emerald Group Publishing Limited
  • Keel: eng
  • ISBN-13: 9781784411848
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Editors Jeliazkov and Poirier present students, academics, and researchers working in a wide variety of contexts with a collection of academic papers and articles devoted to Bayesian model comparison, summarizing central topics and developments in the literature, providing new techniques, methodology, and findings in theoretical, modeling, computational, and inferential research. The eleven international contributions that make up the bulk of the text cover model switching and model averaging in time-varying parameter regression models, Bayesian selection of systematic risk networks, factor selection in dynamic hedge fund replication models, and a variety of other related subjects. Ivan Jeliazkov and Dale J. Poirier are both faculty members of the University of California, Irvine. Distributed in North America by Turpin Distribution. Annotation ©2015 Ringgold, Inc., Portland, OR (protoview.com) Volume 34 of the well respected Advances in Econometrics. This series publishes original scholarly econometrics papers with the intention of expanding the use of developed and emerging econometric techniques by disseminating ideas on the theory and practice of econometrics throughout the empirical economic, business and social science literature. Annual volume themes, selected by the Series Editors, are their interpretation of important new methods and techniques emerging in economics, statistics and the social sciences. Advances in Econometrics is essential reading for academics, researchers and practitioners who are involved in applied economic, business or social science research, and eager to keep up with the latest methodological tools.
List Of Contributors
vii
Preface ix
Ivan Jeliazkov
Dale J. Poirier
Adaptive Sequential Posterior Simulators For Massively Parallel Computing Environments
1(44)
Garland Durham
John Geweke
Model Switching And Model Averaging In Time-Varying Parameter Regression Models
45(26)
Miguel Belmonte
Gary Koop
Assessing Bayesian Model Comparison In Small Samples
71(46)
Enrique Martinez-Garcia
Mark A. Wynne
Bayesian Selection Of Systemic Risk Networks
117(38)
Daniel Felix Ahelegbey
Paolo Giudici
Parallel Constrained Hamiltonian Monte Carlo For Bekk Model Comparison
155(26)
Martin Burda
Factor Selection In Dynamic Hedge Fund Replication Models: A Bayesian Approach
181(42)
Guillaume Weisang
Determining The Proper Specification For Endogenous Covariates In Discrete Data Settings
223(26)
Angela Vossmeyer
Variable Selection In Bayesian Models: Using Parameter Estimation And Non Parameter Estimation Methods
249(30)
Gail Blattenberger
Richard Fowles
Peter D. Loeb
Intrinsic Priors For Objective Bayesian Model Selection
279(22)
Elias Moreno
Luis Raul Pericchi
Demand Estimation With High-Dimensional Product Characteristics
301(24)
Benjamin J. Gillen
Matthew Shum
Hyungsik Roger Moon
Copula Analysis Of Correlated Counts
325
Esther Hee Lee