Muutke küpsiste eelistusi

E-raamat: Bayesian Multilevel Models for Repeated Measures Data: A Conceptual and Practical Introduction in R

  • Formaat: 484 pages
  • Ilmumisaeg: 18-May-2023
  • Kirjastus: Routledge
  • Keel: eng
  • ISBN-13: 9781000869781
  • Formaat - PDF+DRM
  • Hind: 68,89 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 484 pages
  • Ilmumisaeg: 18-May-2023
  • Kirjastus: Routledge
  • Keel: eng
  • ISBN-13: 9781000869781

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This comprehensive book is an introduction to multilevel Bayesian models in R using brms and the Stan programming language. Featuring a series of fully worked analyses of repeated measures data, the focus is placed on active learning through the analyses of the progressively more complicated models presented throughout the book.

In this book, the authors offer an introduction to statistics entirely focused on repeated measures data beginning with very simple two-group comparisons and ending with multinomial regression models with many ‘random effects’. Across 13 well-structured chapters, readers are provided with all the code necessary to run all the analyses and make all the plots in the book, as well as useful examples of how to interpret and write up their own analyses.

This book provides an accessible introduction for readers in any field, with any level of statistical background. Senior undergraduate students, graduate students, and experienced researchers looking to ‘translate’ their skills with more traditional models to a Bayesian framework will benefit greatly from the lessons in this text.



This comprehensive book is an introduction to multilevel Bayesian models in R using brms and the Stan programming language. Featuring a series of fully worked analyses of repeated-measures data, focus is placed on active learning through the analyses of the progressively more complicated models presented throughout the book.

Preface

Acknowledgments

1. Introduction: Experiments and Variables

2. Probabilities, Likelihood, and Inference

3. Fitting Bayesian Regression Models with brms

4. Inspecting a Single Group of Observations using a Bayesian Multilevel
Model

5. Comparing Two Groups of Observations: Factors and Contrasts

6. Variation in Parameters (Random Effects) and Model Comparison

7. Comparing Many Groups, Interactions, and Posterior Predictive Checks

8. Varying Variances, More about Priors, and Prior Predictive Checks

9. Quantitative Predictors and their Interactions with Factors

10. Logistic Regression and Signal Detection Theory Models

11. Multiple Quantitative Predictors, Dealing with Large Models, and Bayesian
ANOVA

12. Multinomial and Ordinal Regression

13. Writing up Experiments: An investigation of the Perception of Apparent
Speaker Characteristics from Speech Acoustics
Santiago Barreda is a phonetician in the Linguistics Department at the University of California, Davis, USA, with a particular interest in speech perception.

Noah Silbert is a former Academic and is currently a practicing Stoic. His training and background are in phonetics, perceptual modeling, and statistics.