Muutke küpsiste eelistusi

E-raamat: Bayesian Scientific Computing

  • Formaat: PDF+DRM
  • Sari: Applied Mathematical Sciences 215
  • Ilmumisaeg: 09-Mar-2023
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031238246
  • Formaat - PDF+DRM
  • Hind: 135,84 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Applied Mathematical Sciences 215
  • Ilmumisaeg: 09-Mar-2023
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031238246

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The once esoteric idea of embedding scientific computing into a probabilistic framework, mostly along the lines of the Bayesian paradigm, has recently enjoyed wide popularity and found its way into numerous applications.  This book provides an insider’s view of how to combine two mature fields, scientific computing and Bayesian inference, into a powerful language leveraging the capabilities of both components for computational efficiency, high resolution power and uncertainty quantification ability.  The impact of Bayesian scientific computing has been particularly significant in the area of computational inverse problems where the data are often scarce or of low quality, but some characteristics of the unknown solution may be available a priori. The ability to combine the flexibility of the Bayesian probabilistic framework with efficient numerical methods has contributed to the popularity of Bayesian inversion, with the prior distribution being the counterpart of classical regularization.  However, the interplay between Bayesian inference and numerical analysis is much richer than providing an alternative way to regularize inverse problems, as demonstrated by the discussion of time dependent problems, iterative methods, and sparsity promoting priors in this book. The quantification of uncertainty in computed solutions and model predictions is another area where Bayesian scientific computing plays a critical role.  This book demonstrates that Bayesian inference and scientific computing have much more in common than what one may expect, and gradually builds a natural interface between these two areas.


Arvustused

The book is presented in a logical order, with good writing style. One of the notable features is that the topics are well illustrated with graphs and figures. (John Masson Noble, Mathematical Reviews, September, 2024)

Inverse problems and subjective computing.- Linear algebra.- Continuous
and discrete multivariate distributions.- Introduction to sampling.- The
praise of ignorance: randomness as lack of certainty.- Enter subject:
Construction of priors.- Posterior densities, ill-conditioning, and classical
regularization.- Conditional Gaussian densities.- Iterative linear solvers
and priorconditioners.- Hierarchical models and Bayesian sparsity.- Sampling:
the real thing.- Dynamic methods and learning from the past.- Bayesian
filtering and Gaussian densities.-