Muutke küpsiste eelistusi

E-raamat: Bayesian Social Science Statistics: From the Very Beginning

(Georgetown University), (American University)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 21,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In this Element, the authors introduce Bayesian probability and inference for social science students and practitioners starting from the absolute beginning and walk readers steadily through the Element. No previous knowledge is required other than that in a basic statistics course. At the end of the process, readers will understand the core tenets of Bayesian theory and practice in a way that enables them to specify, implement, and understand models using practical social science data. Chapters will cover theoretical principles and real-world applications that provide motivation and intuition. Because Bayesian methods are intricately tied to software, code in both R and Python is provided throughout.

In this Element, the authors introduce Bayesian probability and inference for social science students and practitioners starting from the absolute beginning and walk readers steadily through the Element. The readers will understand Bayesian theory and practice using social science data.

Muu info

This Element is an introduction to Bayesian statistics for social science students and practitioners starting from the absolute beginning.
1. Introduction: the purpose and scope of this book;
2. Basic probability principles and Bayes law;
3. What is a likelihood function and why care;
4. The core of Bayesian inference: prior times likelihood;
5. Prior probabilities and the progression of human knowledge;
6. Integrals and expected value: not as scary as they look;
7. Software calculation of Bayesian models;
8. Evaluating and comparing model results;
9. Case study I: election polling and Bayesian updating; References.