Muutke küpsiste eelistusi

E-raamat: Bayesian Statistics for Experimental Scientists: A General Introduction Using Distribution-Free Methods

  • Formaat: 472 pages
  • Sari: The MIT Press
  • Ilmumisaeg: 08-Sep-2020
  • Kirjastus: MIT Press
  • Keel: eng
  • ISBN-13: 9780262365017
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 135,20 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 472 pages
  • Sari: The MIT Press
  • Ilmumisaeg: 08-Sep-2020
  • Kirjastus: MIT Press
  • Keel: eng
  • ISBN-13: 9780262365017
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"An advanced-level textbook on Bayesian statisitics primarily aimed at students in the cognitive, behavioral, and social sciences"--

An introduction to the Bayesian approach to statistical inference that demonstrates its superiority to orthodox frequentist statistical analysis.

This book offers an introduction to the Bayesian approach to statistical inference, with a focus on nonparametric and distribution-free methods. It covers not only well-developed methods for doing Bayesian statistics but also novel tools that enable Bayesian statistical analyses for cases that previously did not have a full Bayesian solution. The book's premise is that there are fundamental problems with orthodox frequentist statistical analyses that distort the scientific process. Side-by-side comparisons of Bayesian and frequentist methods illustrate the mismatch between the needs of experimental scientists in making inferences from data and the properties of the standard tools of classical statistics.

The book first covers elementary probability theory, the binomial model, the multinomial model, and methods for comparing different experimental conditions or groups. It then turns its focus to distribution-free statistics that are based on having ranked data, examining data from experimental studies and rank-based correlative methods. Each chapter includes exercises that help readers achieve a more complete understanding of the material.

The book devotes considerable attention not only to the linkage of statistics to practices in experimental science but also to the theoretical foundations of statistics. Frequentist statistical practices often violate their own theoretical premises. The beauty of Bayesian statistics, readers will learn, is that it is an internally coherent system of scientific inference that can be proved from probability theory.

Preface xiii
1 Introduction To Bayesian Analysis For Categorical Data
1(12)
1.1 Overview
3(1)
1.2 Statistics as a Tool for Building Evidence
3(1)
1.3 Broad Data Types
4(2)
1.3.1 Categorical Data
4(1)
1.3.2 Ranked Data
5(1)
1.3.3 Interval and Ratio Data
5(1)
1.4 Obtaining and Using R Software
6(3)
1.5 Organization of Part I
9(4)
1 Probability And Inference
13(50)
1.1 Overview
13(1)
1.2 Samples, Populations, and Statistical Inference
13(6)
1.2.1 Populations versus Samples
13(2)
1.2.2 Representative Samples and Human Judgment
15(2)
1.2.3 Parameters, Statistics, and Statistical Inference
17(2)
1.3 Defining Probability
19(15)
1.3.1 Addressable Questions, Sample Spaces, and Events
20(5)
1.3.2 Kolmogorov Axioms of Probability
25(2)
1.3.3 Backgammon Example
27(2)
1.3.4 Properties of Continuous Probability Distributions
29(5)
1.4 Assigning Probability Values
34(11)
1.4.1 Problems with Equal-Probability Assignment
34(1)
1.4.2 Relative-Frequency Theory
35(3)
1.4.3 Probability as an Encoding of In formation
38(2)
1.4.4 A Hybrid Bayesian Solution
40(2)
1.4.5 Gambles, Odds, and Probability Measurement
42(3)
1.5 Conjunctive Events
45(9)
1.5.1 Conditional Probabilities
45(2)
1.5.2 Conjunctive Events and Bayes Theorem
47(3)
1.5.3 Statistical Dependence and Independence
50(3)
1.5.4 Disjunctions from Conjunctions
53(1)
1.6 Probability Trees and Unlimited Games
54(3)
1.7 Exercises
57(6)
2 Binomial Model
63(90)
2.1 Overview
63(1)
2.2 Binomial Features and Examples
63(2)
2.2.1 Examples of Binomial Sampling
64(1)
2.3 Binomial Distribution
65(9)
2.3.1 Normal Approximation to the Binomial
71(2)
2.3.2 Binomial Model over Experiments
73(1)
2.4 Bayesian Inference---Discrete Approximation
74(9)
2.4.1 Point Estimation
78(2)
2.4.2 Interval Estimation
80(2)
2.4.3 Hypothesis Testing
82(1)
2.4.4 Quality of the Discrete-Approach Model
83(1)
2.5 Bayesian Inference---Continuous Model
83(15)
2.5.1 The Beta Distribution and the Binomial Model
83(4)
2.5.2 Monte Carlo Samples from the Posterior Distribution
87(2)
2.5.3 Case Study Example: TAS2R38 Gene Study
89(2)
2.5.4 Case Study Example: Machine Recalibration Decision
91(2)
2.5.5 Bayesian-Sign Test: A Pattern-Recognition Case Study
93(5)
2.6 Which Prior?
98(10)
2.6.1 The Fisher Invariance Principle and the Jeffreys Prior
98(5)
2.6.2 Uninformative versus Informative Priors
103(5)
2.7 Statistical Decisions and the Bayes Factor
108(12)
2.7.1 The Predictive Distribution and Sequential Sampling
109(2)
2.7.2 The Bayes Factor for Interval Hypotheses
111(3)
2.7.3 Bayes Factor for the Sharp Null Hypothesis
114(2)
2.7.4 Bayes Factor for a Trivially Small Null Interval
116(1)
2.7.5 Bayes Factors and Sample Size Planning
117(1)
2.7.6 Criticisms of the Bayes Factor
118(2)
2.8 Comparison to the Frequentist Analysis
120(25)
2.8.1 The Frequentist Maximum Likelihood Estimate
120(2)
2.8.2 Frequmtist Hypothesis Testing
122(7)
2.8.3 The Confidence Interval
129(5)
2.8.4 Power and Sample Size Planning
134(3)
2.8.5 Likelihood Principle
137(4)
2.8.6 Meta-Analysis Comparisons
141(4)
2.9 Exercises
145(8)
3 Multinomial Data
153(56)
3.1 Overview
153(1)
3.2 Multinomial Distribution and Examples
153(6)
3.2.1 Examples of Multinomial Studies
154(1)
3.2.2 The Multinomial Distribution
155(4)
3.3 The Dirichlet Distribution
159(8)
3.3.1 Covariation of the Dirichlet Variables
163(4)
3.4 Random Samples from a Dirichlet Distribution
167(4)
3.5 Multinomial Process Models
171(8)
3.5.1 Logistic Models versus Latent Process Models
171(2)
3.5.2 Introduction to Two Process-Tree Models
173(1)
3.5.3 The Recall/2-AFC Follow-Up Model
174(2)
3.5.4 The Chechile-Soraci (1999) Model
176(3)
3.6 Markov Chain Monte Carlo Estimation
179(13)
3.6.1 Classic Monte Carlo Sampling
179(4)
3.6.2 Introduction to Markov Chain Monte Carlo
183(4)
3.6.3 MCMC Estimation for the Recall/2-AFC Model
187(4)
3.6.4 MCMC Estimation for the Chechile-Soraci Model
191(1)
3.7 Population Parameter Mapping
192(9)
3.7.1 PPM Estimation for the Recall/2-AFC Model
194(3)
3.7.2 PPM Estimation for the Chechile-Soraci Model
197(4)
3.8 Exercises
201(3)
3.9 Appendix: Proofs of Selected Theorems
204(5)
4 Condition Effects: Categorical Data
209(70)
4.1 Overview
209(1)
4.2 The Importance of Comparison Conditions
210(1)
4.3 Related Contingency Tables (1 = 2 Conditions)
211(11)
4.3.1 The Classical McNemar Test
212(4)
4.3.2 Bayesian 2 × 2 RB-Contingency Tables (L = 2)
216(2)
4.3.3 Classical m × m RB-Contingency Tables (L = 2)
218(1)
4.3.4 Bayesian m × m RB-Contingency Tables (L = 2)
219(3)
4.4 Bayesian CR Analysis (L = 2 Conditions)
222(4)
4.4.1 CR (L = 2) Contingency Table Framework
222(1)
4.4.2 Bayesian (L = 2, k = 1) Contingency Table Analysis
223(2)
4.4.3 Bayesian (L = 2, k > 1) Contingency Table Analysis
225(1)
4.5 Multiple Comparisons for Bayesian Inference
226(22)
4.5.1 Contrasts and Frequentist Multiple Comparisons
226(6)
4.5.2 Multiple Comparisons from a Bayesian Perspective
232(10)
4.5.3 Examples of Bayesian Multiple Comparison Analyses
242(6)
4.6 L ≥ 2 Completely Randomized Conditions
248(7)
4.6.1 Frequentist Omnibus Test for Independence
248(2)
4.6.2 Pointlessness of the Chi-Square Independence Test
250(2)
4.6.3 Bayesian Analysis for L ≥ 2 Groups or Conditions
252(3)
4.7 L ≥ 2 Randomized-Block Conditions
255(8)
4.7.1 Binomial Data: Frequentist Test
258(1)
4.7.2 Bayesian RB-Contingency Tables for L ≥ 2: Binomial Data
259(1)
4.7.3 Bayesian RB Analysis for Multinomial Data with L ≥ 2
260(3)
4.8 2 × 2 Split-Plot or Mixed Designs
263(2)
4.9 Planning the Sample Size in Advance
265(5)
4.9.1 Sample-Size Planning for RB Experiments
267(1)
4.9.2 Sample-Size Planning for CR Experiments
268(2)
4.10 Overview of Bayesian Comparison Procedures
270(2)
4.11 Exercises
272(7)
II Bayesian Analysis of Ordinal Information
279(150)
5 Median- And Sign-Based Methods
285(32)
5.1 Overview
285(1)
5.2 Median Test
285(13)
5.2.1 Examples of a Median Test Analysis
285(2)
5.2.2 Frequentist Median Test for L = 2 Groups
287(4)
5.2.3 Frequentist Median Test Extension for L > 2
291(1)
5.2.4 Bayesian Median-Test Analysis L = 2 CR Conditions
292(2)
5.2.5 Bayesian Median-Test Analysts L > 2 Conditions
294(1)
5.2.6 Limitations of the Median Test
295(3)
5.3 Sign Test for RB Research Designs
298(7)
5.3.1 Bayesian L = 2 Conditions Sign Test
300(1)
5.3.2 Frequentist Tests for Rank-Based RB Designs for L > 2
301(2)
5.3.3 Bayesian Multiple-Sign Tests for RB Designs for L > 2
303(1)
5.3.4 Sample Size and the Bayes-Factor Relative Efficiency
304(1)
5.4 Bayesian Nonparametric Split-Plot Analysis
305(7)
5.5 Exercises
312(5)
6 Wilcoxon Signed-Rank Procedure
317(24)
6.1 Overview
317(1)
6.2 Frequentist Wilcoxon Signed-Rank Analysis
317(4)
6.2.1 Examples for the Wilcoxon Signed-Rank Statistic
317(2)
6.2.2 Frequentist Wilcoxon Analysis
319(2)
6.3 Bayesian Discrete Small-Sample Analysis
321(7)
6.3.1 Introduction to Bayesian Wilcoxon Analysis
321(5)
6.3.2 Noninteger T+ for n < 25
326(1)
6.3.3 Comparisons to the Yuan-Johnson Approach
327(1)
6.4 Continuous Large-Sample Model
328(6)
6.4.1 The Large-Sample Model
328(4)
6.4.2 A Meta-Analysis Application
332(2)
6.5 Comparisons with Other Procedures
334(3)
6.5.1 Comparisons with the Bayesian Sign Test
334(1)
6.5.2 Comparisons with the Within-Block t Test
335(2)
6.6 Exercises
337(2)
6.7 Appendix: Discrete-Approximation Software
339(2)
7 Mann-Whitney Procedure
341(30)
7.1 Overview
341(1)
7.2 Frequentist Mann-Whitney Statistic
341(6)
7.2.1 Some Examples for the Mann-Whitney Statistic
342(1)
7.2.2 The Mann-Whitney Statistics
343(4)
7.3 Bayesian Mann-Whitney Analysis: Discrete Case
347(8)
7.3.1 The Population Difference Proportion Parameter
347(1)
7.3.2 Exponential Mimicry and the Likelihood Function
348(4)
7.3.3 Discrete Small-Sample Analysis
352(3)
7.4 Continuous Larger-Sample Approximation
355(6)
7.4.1 The General Method
355(4)
7.4.2 Stress-Strength Application
359(2)
7.5 Planning and Bayes-Factor Relative Efficiency
361(1)
7.6 Comparisons to the Independent-Groups t Test
362(1)
7.7 Exercises
363(2)
7.8 Appendix: Programs and Documentation
365(6)
7.8.1 Program for the Discrete Approximation Method
365(1)
7.8.2 Lagrange Estimates for ΩE(x), na, and nb
366(5)
8 Distribution-Free Correlation
371(58)
8.1 Overview
371(1)
8.2 Introduction to Rank-Based Correlation
371(16)
8.2.1 Three Correlation Coefficients
373(14)
8.3 The Kendall Tau with Tied Ranks
387(8)
8.3.1 The Goodman-Kruskal G Statistic
391(4)
8.4 Bayesian Analysis for the Kendall Tau
395(19)
8.4.1 Study of Brain Size and Intelligence
403(1)
8.4.2 Predicting Consumer Preference
404(1)
8.4.3 Ordered-Contingency Table Application
405(2)
8.4.4 Monte Carlo Comparisons
407(3)
8.4.5 Kendall Tau and Experimental Differences
410(4)
8.5 Testing Theories with the Kendall Tau
414(12)
8.5.1 Comparing Scientific Functions
414(3)
8.5.2 Testing Theories of the Risky Weighting Function
417(4)
8.5.3 Testing for a Perfect or Near-Perfect Fit
421(5)
8.6 Exercises
426(3)
References 429(18)
Index 447