About the Author |
|
vii | |
About the Technical Reviewer |
|
ix | |
Acknowledgments |
|
xi | |
Preface |
|
xiii | |
|
Chapter 1 Web Development |
|
|
1 | (30) |
|
Machine Learning Overview |
|
|
1 | (3) |
|
|
4 | (2) |
|
Organizing the Web with HTML |
|
|
6 | (1) |
|
Web Development Using IDEs/Editors |
|
|
6 | (3) |
|
Building Blocks of Web Development |
|
|
9 | (1) |
|
|
9 | (9) |
|
|
18 | (1) |
|
|
18 | (1) |
|
Where to Insert JS Scripts |
|
|
19 | (3) |
|
JavaScript for an Event-Driven Process |
|
|
22 | (1) |
|
Document Object Model Manipulation |
|
|
23 | (3) |
|
|
26 | (2) |
|
|
28 | (1) |
|
|
29 | (2) |
|
Chapter 2 Browser-Based Data Processing |
|
|
31 | (34) |
|
JavaScript Libraries and API for ML on the Web |
|
|
31 | (1) |
|
W3C WebML CG (Community Group) |
|
|
32 | (1) |
|
Manipulating HTML Elements Using JS Libraries |
|
|
33 | (1) |
|
|
34 | (1) |
|
Drawing Graphical Objects |
|
|
35 | (1) |
|
|
36 | (2) |
|
DOM onEvent(mousePressed) Handling |
|
|
38 | (1) |
|
Multiple DOM Objects onEvent Handling |
|
|
39 | (2) |
|
HTML Interactive Elements |
|
|
41 | (4) |
|
Hierarchical (Parent-Child) Interaction of DOM Elements |
|
|
45 | (2) |
|
Accessing DOM Parent-Child Elements Using Variables |
|
|
47 | (2) |
|
Graphics and Interactive Processing in the Browser Using p5.js |
|
|
49 | (2) |
|
Interactive Graphics Application |
|
|
51 | (2) |
|
Object Instance, Storage of Multiple Values, and Loop Through Object |
|
|
53 | (3) |
|
Getting Started with Machine Learning in the Browser Using ml5.js and p5.js |
|
|
56 | (1) |
|
Design, Develop, and Execute Programs Locally |
|
|
56 | (1) |
|
Method 1 Using Python - HTTP Server |
|
|
56 | (2) |
|
Method 2 Using Visual Studio Code Editor with Node.js Live Server |
|
|
58 | (5) |
|
|
63 | (1) |
|
|
63 | (2) |
|
Chapter 3 Human Pose Estimation in the Browser |
|
|
65 | (30) |
|
|
66 | (1) |
|
|
66 | (1) |
|
Human Pose Estimation Using Neural Networks |
|
|
67 | (1) |
|
DeepPose: Human Pose Estimation via Deep Neural Networks |
|
|
67 | (1) |
|
Efficient Object Localization Using Convolutional Networks |
|
|
68 | (1) |
|
Convolutional Pose Machines |
|
|
68 | (1) |
|
Human Pose Estimation with Iterative Error Feedback |
|
|
69 | (1) |
|
Stacked Hourglass Networks for Human Pose Estimation |
|
|
69 | (1) |
|
Simple Baselines for Human Pose Estimation and Tracking |
|
|
69 | (1) |
|
Deep High-Resolution Representation Learning for Human Pose Estimation |
|
|
70 | (1) |
|
Using the ml5.js:posenet() Method |
|
|
70 | (20) |
|
Input, Output, and Data Structure of the PoseNet Model |
|
|
90 | (1) |
|
|
90 | (2) |
|
|
92 | (1) |
|
|
92 | (1) |
|
|
92 | (1) |
|
|
93 | (2) |
|
Chapter 4 Human Pose Classification |
|
|
95 | (40) |
|
Need for Human Pose Estimation in the Browser |
|
|
96 | (1) |
|
ML Classification Techniques in the Browser |
|
|
97 | (3) |
|
|
100 | (6) |
|
Changing Flat File Data into TensorFlow.js Format |
|
|
106 | (7) |
|
Artificial Neural Network Model in the Browser Using TensorFlow.js |
|
|
113 | (1) |
|
|
114 | (1) |
|
Example 1 Neural Network Model in TensorFlow.js |
|
|
115 | (2) |
|
Example 2 A Simple ANN to Realize the "Not AND" (NAND) Boolean Operation |
|
|
117 | (4) |
|
Human Pose Classification Using PoseNet |
|
|
121 | (2) |
|
Setting Up a PoseNet Project |
|
|
123 | (1) |
|
Step 1 Including TensorFlow.js and PoseNet Libraries in the HTML Program (Main File) |
|
|
123 | (1) |
|
Step 2 Single-Person Pose Estimation Using a Browser Webcam |
|
|
124 | (5) |
|
PoseNet Model Confidence Values |
|
|
129 | (4) |
|
|
133 | (1) |
|
|
134 | (1) |
|
|
135 | (28) |
|
Gait Measurement Techniques |
|
|
135 | (2) |
|
Gait Cycle Measurement Parameters and Terminology |
|
|
137 | (1) |
|
Web User Interface for Monitoring Gait Parameters |
|
|
138 | (2) |
|
|
140 | (12) |
|
Real-Time Data Visualization of the Gait Parameters (Patterns) on the Browser |
|
|
152 | (8) |
|
Determining Gait Patterns Using Threshold Values |
|
|
160 | (1) |
|
|
161 | (1) |
|
|
162 | (1) |
|
Chapter 6 Future Possibilities for Running Al Methods in a Browser |
|
|
163 | (14) |
|
|
163 | (2) |
|
Additional Machine Learning Applications with TensorFlow |
|
|
165 | (1) |
|
Face Recognition Using face-api.js |
|
|
165 | (2) |
|
|
167 | (8) |
|
|
175 | (1) |
|
|
175 | (2) |
Conclusion |
|
177 | (2) |
Index |
|
179 | |