Muutke küpsiste eelistusi

E-raamat: Beginning Mathematica and Wolfram for Data Science: Applications in Data Analysis, Machine Learning, and Neural Networks

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 01-Feb-2021
  • Kirjastus: APress
  • Keel: eng
  • ISBN-13: 9781484265949
  • Formaat - EPUB+DRM
  • Hind: 61,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 01-Feb-2021
  • Kirjastus: APress
  • Keel: eng
  • ISBN-13: 9781484265949

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Enhance your data science programming and analysis with the Wolfram programming language and Mathematica, an applied mathematical tools suite. The book will introduce you to the Wolfram programming language and its syntax, as well as the structure of Mathematica and its advantages and disadvantages.

You’ll see how to use the Wolfram language for data science from a theoretical and practical perspective. Learning this language makes your data science code better because it is very intuitive and comes with pre-existing functions that can provide a welcoming experience for those who use other programming languages. 

You’ll cover how to use Mathematica where data management and mathematical computations are needed. Along the way you’ll appreciate how Mathematica provides a complete integrated platform: it has a mixed syntax as a result of its symbolic and numerical calculations allowing it to carry out various processes without superfluous lines of code. You’ll learn to use its notebooks as a standard format, which also serves to create detailed reports of the processes carried out. 

What You Will Learn

  • Use Mathematica to explore data and describe the concepts using Wolfram language commands
  • Create datasets, work with data frames, and create tables
  • Import, export, analyze, and visualize data
  • Work with the Wolfram data repository
  • Build reports on the analysis
  • Use Mathematica for machine learning, with different algorithms, including linear, multiple, and logistic regression; decision trees; and data clustering

Who This Book Is For

Data scientists new to using Wolfram and Mathematica as a language/tool to program in. Programmers should have some prior programming experience, but can be new to the Wolfram language.

About the Author xi
About the Technical Reviewer x
Acknowledgments xv
Introduction xi
Chapter 1 Introduction to Mathematica
1(44)
Why Mathematica?
2(1)
The Wolfram Language
2(1)
Structure of Mathematica
3(5)
Design of Mathematica
5(3)
Notebooks
8(3)
Text Processing
8(2)
Palettes
10(1)
Expression in Mathematica
11(24)
Assigning Values
12(3)
Built-in Functions
15(2)
Dates and Time
17(2)
Basic Plotting
19(3)
Logical Operators and Infix Notation
22(2)
Algebraic Expressions
24(1)
Solving Algebraic Equations
25(3)
Using Wolfram Alpha Inside Mathematica
28(3)
Delayed Expressions
31(1)
Code Performance
32(1)
Strings
33(2)
How Mathematica Works
35(10)
How Computations are Made (Form of Input)
35(4)
Searching for Assistance
39(2)
Handling Errors
41(2)
Notebook Security
43(2)
Chapter 2 Data Manipulation
45(34)
Lists
45(10)
Types of Numbers
46(4)
Working with Digits
50(2)
A Few Mathematical Functions
52(1)
Numeric Function
53(2)
Lists of Objects
55(12)
List Representation
55(1)
Generating Lists
56(3)
Arrays of Data
59(3)
Nested Lists
62(1)
Vectors
63(1)
Matrices
64(1)
Matrix Operations
65(1)
Restructuring a Matrix
66(1)
Manipulating Lists
67(12)
Retrieving Data
68(2)
Assigning or Removing Values
70(3)
Structuring List
73(1)
Criteria Selection
74(5)
Chapter 3 Working with Data and Datasets
79(54)
Operations with Lists
79(7)
Arithmetic Operations to a List
80(1)
Applying Functions to a List
81(2)
Defining Own Functions
83(2)
Pure Functions
85(1)
Indexed Tables
86(7)
Tables with the Wolfram Language
86(4)
Associations
90(3)
Dataset Format
93(40)
Constructing Datasets
93(6)
Accessing Data in a Dataset
99(3)
Adding Values
102(4)
Dropping Values
106(2)
Filtering Values
108(3)
Applying Functions
111(5)
Functions by Column or Row
116(5)
Customizing a Dataset
121(4)
Generalization of Hash Tables
125(8)
Chapter 4 Import and Export
133(34)
Importing Files
134(10)
CSV and TSV Files
134(2)
XLSX Files
136(3)
JSON Files
139(3)
Web Data
142(2)
Semantic Import
144(8)
Quantities
145(2)
Datasets with Quantities
147(3)
Costume Imports
150(2)
Export
152(13)
Other Formats
155(4)
XLS and XLSX Formats
159(1)
JSON Formats
160(3)
Content File Objects
163(2)
Searching Files with Wolfram Language
165(2)
Chapter 5 Data Visualization
167(42)
Basic Visualization
167(8)
2D Plots
167(3)
Plotting Data
170(4)
Plotting Defined Functions
174(1)
Customizing Plots
175(6)
Adding Text to Charts
175(3)
Frame and Grids
178(2)
Filled Plots
180(1)
Combining Plots
181(9)
Multiple Plots
182(3)
Coloring Plot Grids
185(5)
Colors Palette
190(2)
3D Plots
192(5)
Customizing 3D Plots
193(2)
Hue Color Function and List3D
195(2)
Contour Plots
197(6)
3D Plots and 2D Projections
202(1)
Plot Themes
203(6)
Chapter 6 Statistical Data Analysis
209(34)
Random Numbers
209(6)
Random Sampling
212(1)
Systematic Sampling
213(2)
Common Statistical Measures
215(3)
Measures of Central Tendency
216(1)
Measures of Dispersion
217(1)
Statistical Charts
218(18)
BarCharts
218(4)
Histograms
222(2)
Pie Charts and Sector Charts
224(3)
Box Plots
227(2)
Distribution Chart
229(1)
Charts Palette
230(6)
Ordinary Least Square Method
236(7)
Pearson Coefficient
238(1)
Linear Fit
239(1)
Model Properties
240(3)
Chapter 7 Data Exploration
243(30)
Wolfram Data Repository
243(4)
Wolfram Data Repository Website
244(1)
Selecting a Category
245(2)
Extracting Data from the Wolfram Data Repository
247(10)
Accessing Data Inside Mathematica
249(2)
Data Observation
251(6)
Descriptive Statistics
257(5)
Table and Grid Formats
258(4)
Dataset Visualization
262(11)
Data Outside Dataset Format
266(1)
2D and 3D Plots
267(6)
Chapter 8 Machine Learning with the Wolfram Language
273(58)
Gradient Descent Algorithm
273(5)
Getting the Data
274(1)
Algorithm Implementation
275(2)
Multiple Alphas
277(1)
Linear Regression
278(13)
Predict Function
278(1)
Boston Dataset
278(2)
Model Creation
280(6)
Model Measurements
286(2)
Model Assessment
288(2)
Retraining Model Hyperparameters
290(1)
Logistic Regression
291(18)
Titanic Dataset
292(4)
Data Exploration
296(2)
Classify Function
298(5)
Testing the Model
303(6)
Data Clustering
309(22)
Clusters Identification
310(1)
Choosing a Distance Function
311(3)
Identifying Classes
314(1)
K-Means Clustering
315(1)
Dimensionality Reduction
316(3)
Applying K-Means
319(1)
Chaining the Distance Function
320(2)
Different K's
322(3)
Cluster Classify
325(6)
Chapter 9 Neural Networks with the Wolfram Language
331(44)
Layers
332(14)
Input Data
332(1)
Linear Layer
332(1)
Weights and Biases
333(1)
Initializing a Layer
334(2)
Retrieving Data
336(1)
Mean Squared Layer
337(3)
Activation Functions
340(4)
SoftmaxLayer
344(2)
Encoders and Decoders
346(9)
Encoders
346(4)
Pooling Layer
350(1)
Decoders
351(2)
Applying Encoders and Decoders
353(2)
NetChains and Graphs
355(20)
Containers
355(3)
Multiple Chains
358(1)
NetGraphs
359(5)
Combining Containers
364(2)
Network Properties
366(3)
Exporting and Importing a Model
369(6)
Chapter 10 Neural Network Framework
375(32)
Training a Neural Network
375(13)
Data Input
375(1)
Training Phase
376(2)
Model Implementation
378(1)
Batch Size and Rounds
379(4)
Training Method
383(1)
Measuring Performance
384(1)
Model Assessment
385(2)
Exporting a Neural Network
387(1)
Wolfram Neural Net Repository
388(5)
Selecting a Neural Net Model
390(2)
Accessing Inside Mathematica
392(1)
Retrieving Relevant Information
392(1)
LeNet Neural Network
393(12)
LeNet Model
394(1)
MNIST Dataset
395(1)
LeNet Architecture
396(1)
MXNet Framework
396(2)
Preparing LeNet
398(2)
LeNet Training
400(2)
LeNet Model Assessment
402(1)
Testing LeNet
403(2)
Final Remarks
405(2)
Appendix A Installing Mathematica 407(2)
Index 409
Jalil Villalobos Alva is a Wolfram language programmer and Mathematica user. He graduated with a degree in engineering physics from the Universidad Iberoamericana in Mexico City. His research background comprises quantum physics, bionformatics, proteomics, and protein design. His academic interests cover the topics of quantum technology, bioinformatics, machine learning, stochastic processes, and space engineering. During his idle hours he likes to play soccer, swim, and listen to music.