Muutke küpsiste eelistusi

E-raamat: Belief Functions: Theory and Applications: 7th International Conference, BELIEF 2022, Paris, France, October 26-28, 2022, Proceedings

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of the 7th International Conference on Belief Functions, BELIEF 2022, held in Paris, France, in October 2022.The theory of belief functions is now well established as a general framework for reasoning with uncertainty, and has well-understood connections to other frameworks such as probability, possibility, and imprecise probability theories. It has been applied in diverse areas such as machine learning, information fusion, and pattern recognition.





The 29 full papers presented in this book were carefully selected and reviewed from 31 submissions. The papers cover a wide range on theoretical aspects on mathematical foundations, statistical inference as well as on applications in various areas including classification, clustering, data fusion, image processing, and much more.
Evidential Clustering A Distributional Approach for Soft Clustering
Comparison and Evaluation.- Causal transfer evidential clustering.- Jiang A
variational Bayesian clustering approach to acoustic emission interpretation
including soft labels.- Evidential clustering by Competitive Agglomeration.-
Imperfect Labels with Belief Functions for Active Learning.- Machine Learning
and Pattern Recognition An Evidential Neural Network Model for Regression
Based on Random Fuzzy Numbers.- Ordinal Classification using Single-model
Evidential Extreme Learning Machine.- Reliability-based imbalanced data
classification with Dempster-Shafer theory.- Evidential regression by
synthesizing feature selection and parameters learning.- Algorithms and
Evidential Operators Distributed EK-NN classification.- On improving a group
of evidential sources with different contextual corrections.- Measure of
Information Content of Basic Belief Assignments.- Belief functions on On
Modelling and Solving the Shortest PathProblem with Evidential Weights.- Data
and Information Fusion Heterogeneous Image Fusion for Target Recognition
based on Evidence Reasoning.- Cluster Decomposition of the Body of Evidence.-
Evidential Trustworthiness Estimation for Cooperative Perception.- An
Intelligent System for Managing Uncertain Temporal Flood events.- Statistical
Inference - Graphical Models A practical strategy for valid partial
prior-dependent possibilistic inference.- On Conditional Belief Functions in
the Dempster-Shafer Theory.- Valid inferential models offer performance and
probativeness assurances.Links with Other Uncertainty Theories A qualitative
counterpart of belief functions with application to uncertainty propagation
in safety cases.- The Extension of Dempsters Combination Rule Based on
Generalized Credal Sets.- A Correspondence between Credal Partitions and
Fuzzy Orthopartitions.- Toward updating belief functions over BelnapDunn
logic.- Applications Real bird dataset with imprecise and uncertainvalues.-
Addressing ambiguity in randomized reinsurance contracts using belief
functions.- Evidential filtering and spatio-temporal gradient for
micro-movements analysis in the context of bedsores prevention.- Hybrid
Artificial Immune Recognition System with improved belief classification
process.