Muutke küpsiste eelistusi

E-raamat: Big Data Analytics and Intelligent Systems for Cyber Threat Intelligence

Edited by (Charles Darwin University, Australia), Edited by , Edited by (Sultan Moulay Slimane University, Morocco), Edited by
  • Formaat: 310 pages
  • Ilmumisaeg: 28-Apr-2023
  • Kirjastus: River Publishers
  • Keel: eng
  • ISBN-13: 9781000846713
  • Formaat - EPUB+DRM
  • Hind: 93,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 310 pages
  • Ilmumisaeg: 28-Apr-2023
  • Kirjastus: River Publishers
  • Keel: eng
  • ISBN-13: 9781000846713

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In recent years, a considerable amount of effort has been devoted to cyber-threat protection of computer systems which is one of the most critical cybersecurity tasks for single users and businesses since even a single attack can result in compromised data and sufficient losses. Massive losses and frequent attacks dictate the need for accurate and timely detection methods. Current static and dynamic methods do not provide efficient detection, especially when dealing with zero-day attacks. For this reason, big data analytics and machine intelligencebased techniques can be used.

This book brings together researchers in the field of big data analytics and intelligent systems for cyber threat intelligence CTI and key data to advance the mission of anticipating, prohibiting, preventing, preparing, and responding to internal security. The wide variety of topics it presents offers readers multiple perspectives on various disciplines related to big data analytics and intelligent systems for cyber threat intelligence applications.

Technical topics discussed in the book include:
• Big data analytics for cyber threat intelligence and detection
• Artificial intelligence analytics techniques
• Real-time situational awareness
• Machine learning techniques for CTI
• Deep learning techniques for CTI
• Malware detection and prevention techniques
• Intrusion and cybersecurity threat detection and analysis
• Blockchain and machine learning techniques for CTI



This book brings together researchers in the field of big data analytics and intelligent systems for cyber threat intelligence CTI and key data to advance the mission of anticipating, prohibiting, preventing, preparing, and responding to internal security.

1. Introduction
2. Cyber Threat Intelligence Model: An Evaluation of Taxonomies and Sharing Platform within Cyber Threat Intelligence
3. Evaluation of Open Source Web Application Firewalls for Cyber Threat Intelligence
4. User Privacy Protection Mechanisms and Attacks Models in LBS: A Comprehensive Survey
5. Analysis of Encrypted Network Traffic using Machine Learning Models
6. Comparative Analysis of Android Application Dissection and Analysis Tools for Identifying Malware Attributes
7. Classifying Android Pending Intent Based Securities using Machine Learning Algorithms
8. Machine Learning and Blockchain Integration for Security Applications
9. Cyberthreat Real-time Detection Based on an Intelligent Hybrid Network Intrusion Detection System
10. Intelligent Malware Detection and Classification using a Boosted Tree Learning Paradigm
11. Malware and Ransomware Classification, Detection and Prevention Using Artificial Intelligence Techniques

Yassine Maleh, Imed Romdhani