Preface |
|
xiii | |
Author |
|
xv | |
|
|
1 | (24) |
|
|
1 | (2) |
|
|
3 | (2) |
|
|
5 | (1) |
|
1.4 Study Design and Survival Analysis |
|
|
6 | (2) |
|
1.5 Survival Analysis Objective |
|
|
8 | (1) |
|
1.6 Non-Parametric Approach for Survival Analysis |
|
|
9 | (1) |
|
|
9 | (1) |
|
1.8 Median Follow-Up Time Calculation |
|
|
10 | (1) |
|
|
10 | (4) |
|
1.9.1 Multiple event-time data |
|
|
11 | (1) |
|
1.9.2 Multivariate survival data |
|
|
11 | (1) |
|
1.9.3 Univariate survival models |
|
|
12 | (1) |
|
1.9.4 Multivariate survival models |
|
|
12 | (1) |
|
1.9.5 Doubly interval-censored survival data |
|
|
13 | (1) |
|
1.9.6 Frequentist approach |
|
|
13 | (1) |
|
1.10 Bayesian Prior Assumptions for Survival Analysis |
|
|
14 | (1) |
|
1.10.1 Prior in survival analysis |
|
|
15 | (1) |
|
1.10.2 Dirichlet process prior |
|
|
15 | (1) |
|
1.11 Illustration Using R |
|
|
15 | (10) |
|
2 Cox Proportional Survival Analysis |
|
|
25 | (14) |
|
|
25 | (1) |
|
2.2 Cox Proportional Hazard |
|
|
25 | (2) |
|
|
26 | (1) |
|
2.2.2 Partial likelihood function |
|
|
26 | (1) |
|
2.2.3 Wald score and Likelihood ratio tests |
|
|
27 | (1) |
|
2.3 Cox Proportional Diagnostics Test |
|
|
27 | (2) |
|
|
28 | (1) |
|
2.3.2 Martingale residual |
|
|
29 | (1) |
|
2.4 Mean and Median Survival Time |
|
|
29 | (1) |
|
2.5 Stratified Cox Proportional Hazard Test |
|
|
30 | (1) |
|
|
30 | (1) |
|
2.7 Extended Cox Regression Model |
|
|
31 | (1) |
|
2.8 Illustration Using R rr-r |
|
|
32 | (7) |
|
2.8.1 Univariate Cox proportional hazard in high dimensional data |
|
|
32 | (5) |
|
2.8.2 Expectation-maximization algorithm |
|
|
37 | (2) |
|
3 Parametric Survival Analysis |
|
|
39 | (10) |
|
|
39 | (1) |
|
3.2 Regularized Survival Analysis |
|
|
40 | (1) |
|
3.3 Gaussian Prior and Ridge Regression |
|
|
41 | (1) |
|
3.4 Laplacian Prior and Lasso Regression |
|
|
42 | (1) |
|
3.5 Parameteric Survival Analysis |
|
|
42 | (1) |
|
3.6 Different Distribution |
|
|
43 | (2) |
|
3.6.1 Exponential distribution |
|
|
43 | (1) |
|
|
43 | (1) |
|
|
44 | (1) |
|
3.7 Maximum Likelihood Estimation |
|
|
45 | (1) |
|
|
45 | (4) |
|
4 Competing Risk Modeling in High Dimensional Data |
|
|
49 | (24) |
|
|
49 | (3) |
|
4.2 Survival and Competing Risk Model |
|
|
52 | (2) |
|
4.3 The Competing Risk Models |
|
|
54 | (4) |
|
4.4 Aalen's Additive Hazards Model |
|
|
58 | (1) |
|
|
59 | (2) |
|
|
61 | (1) |
|
|
62 | (1) |
|
4.8 Deviance Information Criterion and Akaike Information Criteria |
|
|
63 | (1) |
|
4.9 Illustration with Example Data |
|
|
64 | (4) |
|
4.10 Bayesian for Competing Risk Analysis Illustration Using R |
|
|
68 | (5) |
|
5 Biomarker Thresholding in High Dimensional Data |
|
|
73 | (28) |
|
|
73 | (1) |
|
5.2 Statistical Methodology for Biomarker Thresholding |
|
|
74 | (1) |
|
5.3 Thresholding for Repeatedly Measured Biomarker |
|
|
75 | (2) |
|
|
77 | (3) |
|
5.5 Repeteadly Measured Biomarker Thresholding |
|
|
80 | (2) |
|
5.6 Biomarkar Thresholding Determination |
|
|
82 | (5) |
|
|
87 | (5) |
|
|
92 | (3) |
|
5.9 Classification and Regression Tree Analysis in Biomarker Thresholding |
|
|
95 | (6) |
|
6 High Dimensional Survival Data Analysis |
|
|
101 | (20) |
|
|
101 | (1) |
|
6.2 Challenges in High Dimensional Data |
|
|
102 | (1) |
|
6.3 Variable Selection in High Dimensional Data |
|
|
103 | (3) |
|
|
103 | (1) |
|
|
104 | (1) |
|
|
105 | (1) |
|
6.4 Survival and High Dimensional Data |
|
|
106 | (1) |
|
6.5 Covariance Structure in High Dimensional Data |
|
|
107 | (1) |
|
|
108 | (2) |
|
6.6.1 Bayesian information criterion |
|
|
108 | (1) |
|
6.6.2 Deviance information criterion |
|
|
109 | (1) |
|
6.6.3 Predictive criteria |
|
|
109 | (1) |
|
|
110 | (11) |
|
6.7.1 Data flietration with batches |
|
|
113 | (8) |
|
|
121 | (16) |
|
|
121 | (3) |
|
7.2 Proportional Hazard Model |
|
|
124 | (1) |
|
7.2.1 Single event frailty model |
|
|
124 | (1) |
|
7.2.2 Clustered wise frailty |
|
|
125 | (1) |
|
|
125 | (1) |
|
|
125 | (3) |
|
7.3.1 Frailty distribution |
|
|
126 | (1) |
|
7.3.2 Univariate frailty model |
|
|
127 | (1) |
|
7.3.3 Correlated frailty model |
|
|
127 | (1) |
|
7.3.4 Clustered survival data |
|
|
127 | (1) |
|
|
128 | (1) |
|
|
128 | (2) |
|
7.4.1 Diabetic retinopathy study |
|
|
128 | (1) |
|
7.4.2 Canadian health and aging study |
|
|
129 | (1) |
|
7.5 Frailty Model in Packages |
|
|
130 | (1) |
|
7.6 Frailty and Biomarker |
|
|
131 | (1) |
|
|
132 | (5) |
|
8 Time-Course Gene Expression Data Analysis |
|
|
137 | (24) |
|
|
137 | (2) |
|
|
139 | (1) |
|
8.2.1 Source of microarray data |
|
|
139 | (1) |
|
8.2.2 Gene expression and microarray data |
|
|
139 | (1) |
|
8.3 Model for Microarray Data |
|
|
140 | (1) |
|
8.3.1 Bayesian state space modeling |
|
|
140 | (1) |
|
8.4 Different Covariance Structure |
|
|
141 | (1) |
|
8.4.1 Variance Components (VC) covariance structure |
|
|
141 | (1) |
|
8.4.2 First order Auto Regressive AR(1) |
|
|
141 | (1) |
|
|
142 | (1) |
|
|
142 | (14) |
|
8.5.1 Gene selection procedure |
|
|
144 | (1) |
|
8.5.2 Model fitting and prediction |
|
|
145 | (1) |
|
8.5.3 Parameter estimation |
|
|
145 | (3) |
|
8.5.4 Prediction of gene expression |
|
|
148 | (3) |
|
|
151 | (1) |
|
8.5.6 Longitudinal over cross sectional gene expression |
|
|
152 | (1) |
|
8.5.7 Short time course experiment |
|
|
153 | (1) |
|
|
154 | (1) |
|
8.5.9 Identifying the genes of interest |
|
|
155 | (1) |
|
8.5.10 ANOVA and F-statistic |
|
|
155 | (1) |
|
|
155 | (1) |
|
8.5.12 Gene-specific moderation |
|
|
156 | (1) |
|
8.6 Likelihood-Based Approach |
|
|
156 | (1) |
|
8.7 Empirical Bayes Approach |
|
|
157 | (1) |
|
|
158 | (3) |
|
9 Survival Analysis and Time-course Data Analysis |
|
|
161 | (24) |
|
|
161 | (12) |
|
9.1.1 Cox proportional hazard model and filtration |
|
|
163 | (5) |
|
9.1.2 Multivariate joint model |
|
|
168 | (1) |
|
|
168 | (1) |
|
|
169 | (1) |
|
|
169 | (1) |
|
9.1.3 Bayesian approach in joint longitudinal and survival modeling |
|
|
170 | (1) |
|
9.1.4 Description of data |
|
|
171 | (2) |
|
|
173 | (2) |
|
|
175 | (6) |
|
9.3.1 The linear mixed effect model |
|
|
175 | (2) |
|
|
177 | (2) |
|
9.3.3 The joint longitudinal and survival model |
|
|
179 | (1) |
|
|
180 | (1) |
|
|
181 | (4) |
|
10 Features Selection in High Dimensional Time to Event Data |
|
|
185 | (40) |
|
|
185 | (1) |
|
10.2 Different Methods in Feature Selection |
|
|
185 | (3) |
|
|
186 | (1) |
|
|
186 | (1) |
|
|
187 | (1) |
|
|
187 | (1) |
|
10.2.5 Limitations of existing methods |
|
|
187 | (1) |
|
10.2.6 Re-sampling algorithm |
|
|
188 | (1) |
|
10.3 Distribution of Weight in Feature Selection |
|
|
188 | (5) |
|
10.3.1 Re-sampling feature selection steps |
|
|
191 | (2) |
|
|
193 | (5) |
|
10.5 Weight Function and The Re-sampling Algorithm |
|
|
198 | (2) |
|
10.6 High Dimensional Time to event |
|
|
200 | (4) |
|
10.6.1 Time to event data |
|
|
201 | (1) |
|
10.6.2 Gene expression data |
|
|
201 | (1) |
|
10.6.3 Machine learning algorithms |
|
|
202 | (1) |
|
10.6.4 Machine learning codes with high dimensional data |
|
|
203 | (1) |
|
10.7 Methodological Framework |
|
|
204 | (8) |
|
|
204 | (4) |
|
|
208 | (1) |
|
10.7.3 Classification using CPH model in time-course data |
|
|
208 | (2) |
|
10.7.4 Sequential threshold selection |
|
|
210 | (2) |
|
|
212 | (9) |
|
10.8.1 Implementation details |
|
|
213 | (1) |
|
10.8.1.1 Feature selection using CPH learner model |
|
|
213 | (1) |
|
10.8.1.2 Feature selection using kaplan method learner model |
|
|
214 | (1) |
|
10.8.1.3 Fraity analysis with high dimensional data |
|
|
215 | (1) |
|
10.8.1.4 Sequential thresholding of correlated biomarkers |
|
|
216 | (2) |
|
10.8.1.5 Gene classification using longitudinal gene expressions |
|
|
218 | (3) |
|
|
221 | (1) |
|
|
221 | (4) |
Bibliography |
|
225 | (28) |
Index |
|
253 | |