Muutke küpsiste eelistusi

E-raamat: Big Data Analytics for the Prediction of Tourist Preferences Worldwide

(Talaash Research Consultants, India), (Batoi Systems Pvt Ltd, India), (SRI Padmavati Mahila Visvavidyalayam, India)
  • Formaat: 144 pages
  • Sari: Emerald Points
  • Ilmumisaeg: 22-Feb-2024
  • Kirjastus: Emerald Publishing Limited
  • ISBN-13: 9781835493403
  • Formaat - EPUB+DRM
  • Hind: 52,65 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 144 pages
  • Sari: Emerald Points
  • Ilmumisaeg: 22-Feb-2024
  • Kirjastus: Emerald Publishing Limited
  • ISBN-13: 9781835493403

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Big Data analytics and machine learning are being adopted in a range of industries but how can these technologies be utilised and what can they offer to the tourism industry? In the process of their journeys and in their decision-making processes, people who travel contribute to the generation of a huge flow of data; all this information is a potential base for creating smart destinations and improving tourism organizations potential to customize their products and service offerings.



The real execution of such inventive forms of data-driven value generation in tourism continues to be more restricted to the theory or used in a few exceptional cases. Big data and machine learning techniques in tourism persists as an unclear concept and a subject of investigation that necessitates closer analysis from an extensive range of field and research methods. Big Data Analytics for the Prediction of Tourist Preferences Worldwide tackles this challenge, exploring the benefits, importance and demonstrates how Big Data can be applied in predicting tourist preferences and delivering tourism services in a customer friendly manner.



The authors provide theoretical and experiential contributions designed to see a wider adoption of these technologies in the tourism industry.
Chapter
1. Introduction

Chapter
2. Literature Review

Chapter
3. Design of the Proposed System

Chapter
4. Predicting Preferences of International and Domestic Tourists
Using Association Rule Mining Algorithm

Chapter
5. Predicting Hotel Preferences of International and Domestic
Tourists Using Pointwise Mutual Information

Chapter
6. Big Data Analytics in Predicting Tourist Preferences Based on
Hotel Ratings Using Multiclass Multilabel Classification Algorithm

Chapter
7. Performance Evaluation

Chapter
8. Discussion and Conclusion
Dr. N. Padmaja is Assistant Professor at the Department of Computer Science and Engineering, SRI Padmavati Mahila Visvavidyalayam, India.



Dr. Rajalakshmi Subramaniam is the Founder and CEO at Talaash Research Consultants, Chennai, India.



Dr. Sanjay Mohapatra is Director of Research at Batoi Systems Pvt Ltd, India.