ei ole lubatud
ei ole lubatud
Digitaalõiguste kaitse (DRM)
Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).
Vajalik tarkvara
Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)
PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )
Seda e-raamatut ei saa lugeda Amazon Kindle's.
Section One: Harness the Big data from Power Systems
1. A Holistic Approach to Becoming a Data-driven Utility
2. Security and Data Privacy Challenges for Data-driven Utilities
3. The Role of Big Data and Analytics in Utilities Innovation
4. Big Data integration for the digitalisation and decarbonisation of distribution grids Section Two: Put the Power of Big data into Power Systems
5. Topology Detection in Distribution Networks with Machine Learning
6. Grid Topology Identification via Distributed Statistical Hypothesis Testing
7. Learning Stable Volt/Var Controllers in Distribution Grids
8. Grid-edge Optimization and Control with Machine Learning
9. Fault Detection in Distribution Grid with Spatial-Temporal Recurrent Graph Neural Networks
10. Distribution Networks Events Analytics using Physics-Informed Graph Neural Networks
11. Transient Stability Predictions in Power Systems using Transfer Learning
12. Misconfiguration Detection of Inverter-based Units in Power Distribution Grids using Machine Learning
13. Virtual Inertia Provision from Distribution Power Systems using Machine Learning
14. Electricity Demand Flexibility Estimation in Warehouses using Machine Learning
15. Big Data Applications in Electric Power Systems: The Role of Explainable Artificial Intelligence (XAI) in Smart Grids
16. Photovoltaic and Wind Power Forecasting Using Data-Driven Techniques: an overview and a distribution-level case study
17. Grid resilience against wildfire with Machine Learning