Muutke küpsiste eelistusi

E-raamat: Big Data Factories: Collaborative Approaches

Edited by , Edited by , Edited by
  • Formaat: EPUB+DRM
  • Sari: Computational Social Sciences
  • Ilmumisaeg: 27-Nov-2017
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319591865
  • Formaat - EPUB+DRM
  • Hind: 37,04 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Computational Social Sciences
  • Ilmumisaeg: 27-Nov-2017
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319591865

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The book proposes a systematic approach to big data collection, documentation and development of analytic procedures that foster collaboration on a large scale. This approach, designated as “data factoring” emphasizes the need to think of each individual dataset developed by an individual project as part of a broader data ecosystem, easily accessible and exploitable by parties not directly involved with data collection and documentation. Furthermore, data factoring uses and encourages pre-analytic operations that add value to big data sets, especially recombining and repurposing.

The book proposes a research-development agenda that can undergird an ideal data factory approach. Several programmatic chapters discuss specialized issues involved in data factoring (documentation, meta-data specification, building flexible, yet comprehensive data ontologies, usability issues involved in collaborative tools, etc.). The book also presents case studies for data factoring and processing that can lead to building better scientific collaboration and data sharing strategies and tools.

Finally, the book presents the teaching utility of data factoring and the ethical and privacy concerns related to it.

Chapter 9 of this book is available open access under a CC BY 4.0 license at link.springer.com
1 Introduction
1(8)
Nicolas Jullien
Sorin Adam Matei
Sean P. Goggins
Part I Theoretical Principles and Approaches to Data Factories
2 Accessibility and Flexibility: Two Organizing Principles for Big Data Collaboration
9(14)
Libby Hemphill
Susan T. Jackson
3 The Open Community Data Exchange: Advancing Data Sharing and Discovery in Open Online Community Science
23(16)
Sean P. Goggins
A.J. Million
Georg J. P. Link
Matt Germonprez
Kristen Schuster
Part II Theoretical Principles and Ideas for Designing and Deploying Data Factory Approaches
4 Levels of Trace Data for Social and Behavioural Science Research
39(12)
Kevin Crowston
5 The Ten Adoption Drivers of Open Source Software That Enables e-Research in Data Factories for Open Innovations
51(16)
Kerk F. Kee
6 Aligning Online Social Collaboration Data Around Social Order: Theoretical Considerations and Measures
67(12)
Sorin Adam Matei
Brian C. Britt
Part III Approaches in Action Through Case Studies of Data Based Research, Best Practice Scenarios, or Educational Briefs
7 Lessons Learned from a Decade of FLOSS Data Collection
79(22)
Kevin Crowston
Megan Squire
8 Teaching Students How (Not) to Lie, Manipulate, and Mislead with Information Visualization
101(14)
Athir Mahmud
Mel Hogan
Andrea Zeffiro
Libby Hemphill
9 Democratizing Data Science: The Community Data Science Workshops and Classes
115(22)
Benjamin Mako Hill
Dharma Dailey
Richard T. Guy
Ben Lewis
Mika Matsuzaki
Jonathan T. Morgan
Index 137
Sorin Matei is a Professor at Brian Lamb School of Communication at Purdue University.  His focus areas are computational social science, collaborative content production, and data storytelling. Nicolas Jullien is an Associate Professor at the LUSSI Department of Telecom Bretagne.  His research interests are in open and online communities. Sean Patrick Goggins is an Associate Professor at Missouri's iSchool, with courtesy appointments as core faculty in the University of Missouri's Informatics Institute and Department of Computer Science.